Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Optimizing the blast fragmentation quality of discontinuous rock mass: Case study of Jebel Bouzegza Open-Cast Mine, North Algeria

Khaoula Bedri1, Malek Ould Hamou1, Mira Filali2, Riheb Hadji3, 4, Hassan Taib5

1Mining Department, Mining Engineering Laboratory, National Polytechnic School, Algiers, Algeria

2Department of Earth Sciences, Djilali Bounaama University, Khemis Miliana, Algeria

3Department of Earth Sciences, Institute of Architecture and Earth Sciences, University of Farhat Abbas, Setif, Algeria

4Laboratory of Applied Research in Engineering Geology, Geotechnics, Water Sciences, and Environment, University of Farhat Abbas, Setif, Algeria

5Department of Geology, Faculty of Earth Sciences and Architecture Larbi Ben M’hidi University, Oum El Bouaghi, Algeria Laboratory of Natural Resources and Management of Sensitive Environments, Algeria


Min. miner. depos. 2023, 17(4):35-44


https://doi.org/10.33271/mining17.04.035

Full text (PDF)


      ABSTRACT

      Purpose. The research aims to investigate the impact of discontinuity characteristics, including dip direction, dip and joint spacing, on the size distribution of blasted fragments in mines and quarries. The accuracy of blasting results is essential for efficient operations, and understanding these factors can enhance blast fragmentation outcomes.

      Methods. We conducted our research at the Jebel Bouzegza C01 aggregate quarry, analyzing eight blast benches. To determine fragment sizes, we employed image processing tools to calculate P50, P80, and Pmax sizes. Additionally, we used the Kuz Ram model to predict the average size (X50) and the percentage of oversize fragments (Pmax). The determination coefficient (R²) is calculated for both methods to assess their correlations with dip direction.

      Findings. Our analysis revealed significant findings related to the impact of discontinuity characteristics on fragment size distribution. The dip direction exhibits the strongest correlation of Pmax size when using Split Desktop and X50, as well as Pmax% with the Kuz Ram model. Joint spacing also plays a role in influencing blast fragmentation outcomes, although its effect depends on the infill materials.

      Originality. This research contributes to the understanding of factors affecting blast fragmentation outcomes. The research focuses on dip direction, dip and joint spacing characteristics, and adds to existing knowledge in this field.

      Practical implications. The findings of this research have practical implications for mines and quarries, offering valuable guidance for site investigations and optimization of blasting practices. By assessing properties such as dip direction and joint spacing, blasting operations can be enhanced to achieve more efficient and accurate results.

      Keywords: blasting, fragment size distribution, discontinuity characteristics, dip direction, joint spacing


      REFERENCES

  1. Morin, M.A., & Ficarazzo, F. (2006). Monte Carlo simulation as a tool to predict blasting fragmentation based on the Kuz-Ram model. Computers & Geosciences, 32(3), 352-359. https://doi.org/10.1016/j.cageo.2005.06.022
  2. Gheibie, S., Aghababaei, H., Hoseinie, S.H., & Pourrahimian, Y. (2009). Modified Kuz-Ram fragmentation model and its use at the Sungun Copper Mine. International Journal of Rock Mechanics and Mining Sciences, 46(6), 967-973. https://doi.org/10.1016/j.ijrmms.2009.05.003
  3. Gadri, L., Hadji, R., Zahri, F., Benghazi, Z., Boumezbeur, A., Laid, B.M., & Raїs, K. (2015). The quarries edges stability in opencast mines: A case study of the Jebel Onk phosphate mine, NE Algeria. Arabian Journal of Geosciences, (8), 8987-8997. https://doi.org/10.1007/s12517-015-1887-3
  4. Zahri, F., Boukelloul, M.L., Hadji, R., & Talhi, K. (2016). Slope stability analysis in open pit mines of Jebel Gustar career, NE Algeria – A multi-steps approach. Mining Science, (23), 137-146.
  5. Kerbati, N.R., Gadri, L., Hadji, R., Hamad, A., & Boukelloul, M.L. (2020). Graphical and numerical methods for stability analysis in surrounding rock of underground excavations, example of Boukhadra Iron Mine NE Algeria. Geotechnical and Geological Engineering, (38), 2725-2733. https://doi.org/10.1007/s10706-019-01181-9
  6. Zerzour, O., Gadri, L., Hadji, R., Mebrouk, F., & Hamed, Y. (2021). Geostatistics-based method for irregular mineral resource estimation, in Ouenza Iron Mine, Northeastern Algeria. Geotechnical and Geological Engineering, (39), 3337-3346. https://doi.org/10.1007/s10706-021-01695-1
  7. Benyoucef, A.A., Gadri, L., Hadji, R., Mebrouk, F., & Harkati, E. (2022). Mining operations and geotechnical issues in deep hard rock mining-case of Boukhadra iron mine. Geomatics, Landmanagement and Landscape, (4), 27-46. https://doi.org/10.15576/GLL/2022.4.27
  8. Bakhtavar, E., Khoshrou, H., & Badroddin, M. (2015). Using dimensional-regression analysis to predict the mean particle size of fragmentation by blasting at the Sungun copper mine. Arabian Journal of Geosciences, (8), 2111-2120. https://doi.org/10.1007/s12517-013-1261-2
  9. Saadoun, A., Fredj, M., Boukarm, R., & Hadji, R. (2022). Fragmentation analysis using digital image processing and empirical model (KuzRam): A comparative study. Journal of Mining Institute, (257), 822-832. https://doi.org/10.31897/PMI.2022.84
  10. Segarra, P., Sanchidrián, J.A., Navarro, J., & Castedo, R. (2018). The fragmentation energy-fan model in quarry blasts. Rock Mechanics and Rock Engineering, (51), 2175-2190. https://doi.org/10.1007/s00603-018-1470-9
  11. Lawal, A.I. (2021). A new modification to the Kuz-Ram model using the fragment size predicted by image analysis. International Journal of Rock Mechanics and Mining Sciences, (138), 104595. https://doi.org/10.1016/j.ijrmms.2020.104595
  12. Tiile, R.N. (2016). Artificial neural network approach to predict blast-induced ground vibration, air blast and rock fragmentation. M.Sc. Thesis. Rolla, Missouri, United States: Missouri University of Science and Technology, 99 p.
  13. Mohamed, F., Riadh, B., Abderazzak, S., Radouane, N., Mohamed, S., & Ibsa, T. (2019). Distribution analysis of rock fragments size based on the digital image processing and the Kuz-Ram model Cas of Jebel Medjounes Quarry. Aspects in Mining & Mineral Science, 2(4), 325-328. https://doi.org/10.31031/AMMS.2019.02.000545
  14. Singh, S.P. (2005). Blast damage control in jointed rock mass. Fragblast, 9(3), 175-187. https://doi.org/10.1080/13855140500293280
  15. Dahoua, L., Usychenko, O., Savenko, V.Y., & Hadji, R. (2018). Mathematical approach for estimating the stability of geotextile-reinforced embankments during an earthquake. Mining Science, (25), 207-217.
  16. Zeqiri, R.R., Riheb, H., Karim, Z., Younes, G., Rania, B., & Aniss, M. (2019). Analysis of safety factor of security plates in the mine “Trepça” Stantërg. Mining Science, (26), 21-36. https://doi.org/10.37190/msc192602
  17. Saadoun, A., Yilmaz, I., Hafsaoui, A., Hadji, R., Fredj, M., Boukarm, R., & Nakache, R. (2020). Slope stability study in quarries by different approaches: Case Chouf Amar Quarry, Algeria. IOP Conference Series: Materials Science and Engineering, 960(4), 042026. https://doi.org/10.1088/1757-899X/960/4/042026
  18. Rais, K., Kara, M., Gadri, L., Hadji, R., & Khochmen, L. (2017). Original approach for the drilling process optimization in open cast mines; Case study of Kef Essenoun open pit mine Northeast of Algeria. Mining Science, (24), 147-159. https://doi.org/10.5277/msc172409
  19. Benyoucef, A.A., Gadri, L., Hadji, R., Slimane, H., Mebrouk, F., & Hamed, Y. (2023). Empirical graphical and numerical model for the schematization of underground mining operations in the heterogeneous rock masses, case of Boukhadra mine, NE Algeria. Arabian Journal of Geosciences, (16), 165. https://doi.org/10.1007/s12517-023-11219-1
  20. Zerzour, O., Gadri, L., Hadji, R., Mebrouk, F., & Hamed, Y. (2020). Semi-variograms and kriging techniques in iron ore reserve categori-zation: Application at Jebel Wenza deposit. Arabian Journal of Geosciences, (13), 820. https://doi.org/10.1007/s12517-020-05858-x
  21. Azizi, A., & Moomivand, H. (2021). A new approach to represent impact of discontinuity spacing and rock mass description on the median fragment size of blasted rocks using image analysis of rock mass. Rock Mechanics and Rock Engineering, (54), 2013-2038. https://doi.org/10.1007/s00603-020-02360-4
  22. Fredj, M., Hafsaoui, A., Riheb, H., Boukarm, R., & Saadoun, A. (2020). Back-analysis study on slope instability in an open pit mine (Algeria). Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 24-29. https://doi.org/10.33271/nvngu/2020-2/024
  23. Souza, J.C.D., Silva, A.C.S.D., & Rocha, S.S. (2018). Analysis of blasting rocks prediction and rock fragmentation results using Split-Desktop software. Tecnologia em Metalurgia, Materiais e Mineração, 15(1), 22-30. https://doi.org/10.4322/2176-1523.1234
  24. Yahyaoui, S., Hafsaoui, A., Aissi, A., & Benselhoub, A. (2018). Relationship of the discontinuities and the rock blasting results. Journal of Geology, Geography and Geoecology, 26(1), 208-218. https://doi.org/10.15421/111821
  25. Konak, G., & Ongen, T. (2013). Determining the effects of discontinuities on blast heap fragment size distribution using a numerical modeling method. Archives of Mining Sciences, 58(1), 241-253. https://doi.org/10.2478/amsc-2013-0017
  26. Hafsaoui, A., & Talhi, K. (2011). Instrumented model rock blasting. Journal of Testing and Evaluation, 39(5), 842-846. https://doi.org/10.1520/JTE103178
  27. Kallel, A., Ksibi, M., Dhia, H.B., & Khélifi, N. (2018). Recent advances in environmental science from the Euro-Mediterranean and surrounding regions. Proceedings of Euro-Mediterranean Conference for Environmental Integration. https://doi.org/10.1007/978-3-319-70548-4
  28. Bhandari, S. (2020). Changes in fragmentation processes with blasting conditions. Rock Fragmentation by Blasting, 301-309. https://doi.org/10.1201/9781003078104-43
  29. Özkahraman, H.T. (1994). Critical evaluation of blast design parameters for discontinous rocks by slab blasting. Kayseri, Turkey: Graduate School of Natural and Applied Sciences.
  30. Yang, Z.G., & Rustan, A. (1983). The influence from primary structure on fragmentation. International Symposium on Rock Fragmentation by Blasting, (2), 581-603.
  31. Fourney, W.L. (1993). Mechanisms of rock fragmentation by blasting. Comprehensive Rock Engineering Principles, Practice and Projects, (4), 39-69. https://doi.org/10.1016/B978-0-08-042067-7.50009-X
  32. Paswan, R.K., Mohammad, S., Singh, P.K., Khare, H.S., Singh, B.K., & Singh, R.J. (2014). Controlled blasting at Parsa East & Kanta Basan opencast mines for safe and efficient mining operations. The Indian Mining & Engineering Journal, 53(4), 7-17.
  33. Roy, M.P., Paswan, R.K., Sarim, M.D., & Kumar, S. (2017). Geological discontinuities, blast vibration and frag-mentation control-a case study. Proceedings of the 7th Asian Mining Congress and International Mining Exhibition, 8-11.
  34. Adebola, J.M., Ajayi, O.D., & Elijah, P. (2016). Rock fragmentation prediction using Kuz-Ram model. Journal of Environment and Earth Science, 6(5), 110-115.
  35. Kuznetsov, V.M. (1973). The mean diameter of the fragments formed by blasting rock. Soviet Mining Science, (9), 144-148.
  36. Cunningham, C.V.B. (2005). The Kuz-Ram fragmentation model – 20 years on. Brighton Conference Proceedings, (4), 201-210.
  37. Cunningham, C. (1983). The Kuz-Ram model for prediction of fragmentation from blasting. First International Symposium on Rock Fragmentation by Blasting, 439-453.
  38. Cardu, M., & Calzamiglia, A. (2021). Analysis of the techniques for assessing the features of blast-induced fragmentation in an open pit quarry. IOP Conference Series: Earth and Environmental Science, 833(1), 012121. https://doi.org/10.1088/1755-1315/833/1/012121
  39. Yilmaz, O. (2023). Rock factor prediction in the Kuz-Ram model and burden estimation by mean fragment size. Geomechanics for Energy and the Environment, (33), 100415. https://doi.org/10.1016/j.gete.2022.100415
  40. Siddiqui, F.I. (2009). Measurement of size distribution of blasted rock using digital image processing. Engineering Sciences, 20(2), 81-93.
  41. Tavakol Elahi, A., & Hosseini, M. (2017). Analysis of blasted rocks fragmentation using digital image processing (Case study: Limestone quarry of Abyek Cement Company). International Journal of Geo-Engineering, (8), 16. https://doi.org/10.1186/s40703-017-0053-z
  42. Faramarzi, F., Ebrahimi Farsangi, M.A., & Mansouri, H. (2013). An RES-based model for risk assessment and prediction of backbreak in bench blasting. Rock Mechanics and Rock Engineering, (46), 877-887. https://doi.org/10.1007/s00603-012-0298-y
  43. Kansake, B.A., Temeng, V.A., & Afum, B.O. (2016). Comparative analysis of rock fragmentation models – A case study. Proceedings of the 4th UMaT Biennial International Mining and Mineral Conference, 1-11.
  44. Akbari, M., Lashkaripour, G., Bafghi, A.Y., & Ghafoori, M. (2015). Blastability evaluation for rock mass fragmentation in Iran central iron ore mines. International Journal of Mining Science and Technology, 25(1), 59-66. https://doi.org/10.1016/j.ijmst.2014.11.008
  45. Kimour, M., & Serradj, T. (2015). Characterization of geological rock mass case of the Socar Heliopolis-Guelma, Algeria Aggregate Quarry. Procedia Earth and Planetary Science, (15), 205-212. https://doi.org/10.1016/j.proeps.2015.08.050
  46. Brahmi, S., Baali, F., Hadji, R., Brahmi, S., Hamad, A., Rahal, O., & Hamed, Y. (2021). Assessment of groundwater and soil pollution by leachate using electrical resistivity and induced polarization imaging survey, case of Tebessa municipal landfill, NE Algeria. Arabian Journal of Geosciences, (14), 1-13. https://doi.org/10.1007/s12517-021-06571-z
  47. Ncibi, K., Hadji, R., Hajji, S., Besser, H., Hajlaoui, H., Hamad, A., & Hamed, Y. (2021). Spatial variation of groundwater vulnerability to nitrate pollution under excessive fertilization using index overlay method in central Tunisia (Sidi Bouzid basin). Irrigation and Drainage, 70(5), 1209-1226. https://doi.org/10.1002/ird.2599
  48. Benmarce, K., Hadji, R., Zahri, F., Khanchoul, K., Chouabi, A., Zighmi, K., & Hamed, Y. (2021). Hydrochemical and geothermometry characterization for a geothermal system in semiarid dry climate: The case study of Hamma spring (Northeast Algeria). Journal of African Earth Sciences, (182), 104285. https://doi.org/10.1016/j.jafrearsci.2021.104285
  49. Hamad, A., Hadji, R., Boubaya, D., Brahmi, S., Baali, F., Legrioui, R., & Hamed, Y. (2021). Integrating gravity data for structural investigation of the Youkous-Tebessa and Foussana-Talah transboundary basins (North Africa). Euro-Mediterranean Journal for Environmental Integration, (6), 1-11. https://doi.org/10.1007/s41207-021-00270-7
  50. Hamed, Y., Khelifi, F., Houda, B., Sâad, A.B., Ncibi, K., Hadji, R., & Hamad, A. (2022). Phosphate mining pollution in southern Tunisia: Environmental, epidemiological, and socioeconomic investigation. Environment, Development and Sustainability, 1-18. https://doi.org/10.1007/s10668-022-02606-x
  51. Bagwan, W.A., Gavali, R.S., & Maity, A. (2023). Quantifying soil organic carbon (SOC) density and stock in the Urmodi River watershed of Maharashtra, India: Implications for sustainable land management. Journal of Umm Al-Qura University for Applied Sciences, (9), 548-564. https://doi.org/10.1007/s43994-023-00064-3
  52. Taib, H., Hadji, R., Hamed, Y., Bensalem, M.S., & Amamria, S. (2023). Exploring neotectonic activity in a semiarid basin: A case study of the Ain Zerga watershed. Journal of Umm Al-Qura University for Applied Sciences, 1-14. https://doi.org/10.1007/s43994-023-00072-3
  53. Asmoay, A.A., & Mabrouk, W.A. (2023). Appraisal of rock-water interaction and frailty of groundwater to corrosion and salinization, northwestern Gulf of Suez, Egypt. Journal of Umm Al-Qura University for Applied Sciences, 1-12. https://doi.org/10.1007/s43994-023-00075-0
  54. Лицензия Creative Commons