Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Use of solid mining waste to improve water retention capacity of loamy soils

Viktor Kostenko1, Olha Bohomaz1, Inna Hlushko1, Nataliia Liashok1, Tetiana Kostenko2

1Donetsk National Technical University, Pokrovsk, Ukraine

2Cherkasy Institute of Fire Safety named after Chornobyl Heroes of National University of Civil Defence of Ukraine, Cherkasy, Ukrainet


Min. miner. depos. 2023, 17(4):29-34


https://doi.org/10.33271/mining17.04.029

Full text (PDF)


      ABSTRACT

      Purpose. The research explores the possibility of increasing the fertile properties of agricultural soils of loamy type by adding burnt-out dump mass from coal enterprises.

      Methods. Laboratory research on parameters of penetration and retention capacity of sorbed and meniscal water for diffe-rent burnt-out rock fractions. The burnt-out rock was sampled from the mine No. 5/6 waste rock dump in the city of Myrnohrad, Donetsk Oblast, and divided into four fractions from 0.63 to 10 mm. The water penetration coefficient of the soil with the added dump mass is measured by the velocity of water seepage into the test samples. The ability of rock additives to retain film-sorbed and capillary water is assessed by comparing the weight of dry and moistened samples of crushed dump mass.

      Findings. The velocity parameters of water penetration into samples of loamy mixtures with burnt-out dump mass with fractions ranging from 10 to 0.63 mm in size have been determined. It has been found that an increase in the percentage of burnt-out rock in the mixture leads to an increase in the water penetration velocity from 1.2 ml/cm2·min with a rock content of 30% to 30.66 ml/cm2·min with a rock content of 70%. The highest penetration coefficients are achieved when adding rock with a small fractional composition of 0.63-3 mm, since an increase in grain size leads to a reduction in the coefficient by se-veral times. It has been determined that with an increase in the size of the rock fractions in a loamy mixture, the retention capacity of sorbed and pore water suitable for plant nutrition decreases by approximately 40%.

      Originality. For the first time, the parameters of penetration coefficients, as well as the accumulation of sorbed and meniscal water for mine waste in the Selidovo-Pokrovskyi district of Donbas, have been determined.

      Practical implications. The results obtained can be used to improve the physical properties of agricultural soils of loamy type by increasing their water retention capacity.

      Keywords: mine rock, waste heap, mining waste, sorbed and meniscal water, water penetration velocity


      REFERENCES

  1. Zgurovsky, M., Kravchenko, M., Boiarynova, K., Kopishynska, K., & Pyshnograiev, I. (2022). The energy independence of the european countries: Consequences of the Russia’s military invasion of Ukraine. International Conference on System Analysis & Intelligent Computing, 1-4. https://doi.org/10.1109/SAIC57818.2022.9923004
  2. Żuk, P., & Żuk, P. (2022). National energy security or acceleration of transition? Energy policy after the war in Ukraine. Joule, 6(4), 709-712. https://doi.org/10.1016/j.joule.2022.03.009
  3. Kostenko, V., Zavialova, O., Novikova, Y., Bohomaz, O., Krupka, Y., & Кostenko, T. (2022). Substantiating the parameters of quickly erected explosion-proof stopping. Rudarsko-Geološko-Naftni Zbornik, 37(4), 143-153. https://doi.org/10.17794/rgn.2023.2.10
  4. Kostenko, V., Bohomaz, O., Kostenko, T., & Berezovskyi, A. (2023). Mechanism of coal aerosol explosion development in an experimental mine working. Rudarsko-Geološko-Naftni Zbornik, 38(2), 135-142. https://doi.org/10.17794/rgn.2022.4.12
  5. Kostenko, V., Zavialova, O., Chepak, O., & Pokalyuk, V. (2018). Mitigating the adverse environmental impact resulting from closing down of mining enterprises. Mining of Mineral Deposits, 12(3), 105-112. https://doi.org/10.15407/mining12.03.105
  6. Statystychnyy shchorichnyk 2021. (2022). Kyiv, Ukraine: Derzhavna sluzhba statystyky Ukrayiny, 455 s.
  7. Petlovanyi, M.V., & Medianyk, V.Y. (2018). Assessment of coal mine waste dumps development priority. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 28-35. https://doi.org/10.29202/nvngu/2018-4/3
  8. Povzun, O.I., Podkopayev, S.V., & Kamenets, V.I. (2017) Pidvyshchennia ekobezpeky vuhledobuvnykh rehioniv na osnovi vykorystannia kompleksu promvidkhodiv dlia dorozhnoho budivnytstva. Naukovo-Tekhnichnyi Zhurnal, 1(15), 138-146.
  9. Zubov, A., Zubov, A., & Zubova, L. (2023). Ecological hazard, typology, morphometry and quantity of waste dumps of coal mines in Ukraine. Ecological Questions, 34(4), 1-19. https://doi.org/10.12775/EQ.2023.042
  10. Karabyn, V., Shtain, B., & Popovych, V. (2018). Thermal regimes of spontaneous firing coal washing waste sites. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 3(429), 64-74.
  11. Smoliński, A., Dombek, V., Pertile, E., Drobek, L., Gogola, К., Żechowska, S.W., & Magdziarczyk, М. (2021). An analysis of self-ignition of mine waste dumps in terms of environmental protection in industrial areas in Poland. Scientific Reports, (11), 8851. https://doi.org/10.1038/s41598-021-88470-7
  12. Dovkillia Donbasu: Nevydymyi front. Ekolohichni naslidky viiny na Skhodi Ukrainy v konteksti mizhnarodnoho humanitarnoho prava i v praktychnomu vymiri. (2021). Kyiv, Ukraine: Truth Hounds, National Endowment for Democracy, 51 p.
  13. Xiao, W., Ren, H., Sui, T., Zhang, H., Zhao, Y., & Hu, Z. (2022). A drone- and field-based investigation of the land degradation and soil erosion at an opencast coal mine dump after 5 years’ evolution of natural processes. International Journal of Coal Science & Technology, (9), 42. https://doi.org/10.1007/s40789-022-00513-0
  14. Ribeiro, J., & Flores, D. (2021) Occurrence, leaching, and mobility of major and trace elements in a coal mining waste dump: The case of Douro Coalfield, Portugal. Energy Geoscience, 2(2), 121-128. https://doi.org/10.1016/j.engeos.2020.09.005
  15. Pinder, V., & Popovych, V. (2017). Reclamation of mine waste dumps of liquidates mines in Lviv-Volyn coal basin. Scientific Bulletin of UNFU, 27(3), 113-116. https://doi.org/10.15421/40270325
  16. Zubov, O.R., Zubova, L.H., & Zubov, A.O. (2018). Otsinyuvannya vplyvu terykoniv na ekolohichnyy stan ahrolandshaftiv. Naukovyy visnyk NLTU Ukrayiny, 29(9), 50-59. https://doi.org/10.36930/40290909
  17. Vriens, B., Plante, B., Seigneur, N., & Jamieson, H. (2020). Mine waste rock: Insights for sustainable hydrogeochemical management. Minerals, 10(9), 728. https://doi.org/10.3390/min10090728
  18. Tayebi-Khorami, M., Edraki, M., Corder, G., & Golev, А. (2019). Re-thinking mining waste through an integrative approach led by circular economy aspirations. Minerals, 9(5), 286. https://doi.org/10.3390/min9050286
  19. Trofymchuk, O., Yakovliev, Y., Anpilova, Y., Myrontsov, M., & Okhariev, V. (2021). Ecological situation of post-mining regions in Ukraine. Systems, Decision and Control in Energy II, 293-306. https://doi.org/10.1007/978-3-030-69189-9_17
  20. Petlovanyi, M., Sai, К., Malashkevych, D., Popovych, V., & Khorolskyi, А. (2023). Influence of waste rock dump placement on the geomechanical state of underground mine workings. IOP Conference Series: Earth and Environmental Science, (1156), 012007. https://doi.org/10.1088/1755-1315/1156/1/012007
  21. Park, J., Edraki, M., Mulligan, D., & Jang, H. (2014). The application of coal combustion by-products in mine site rehabilitation. Journal of Cleaner Production, (84), 761-772. https://doi.org/10.1016/j.jclepro.2014.01.049
  22. Kramchaninova, M.D., & Fot, V.O. (2018). Vykorystannia vtorynnykh resursiv yak zasib zabezpechennia ekoloho-ekonomichnoi efektyvnosti vuhilnykh pidpryiemstv. Biznesinform, (10), 165-170.
  23. Segui, P., Safhi, A.M., Amrani, M., & Benzaazoua, M. (2023). Mining wastes as road construction material: A review. Minerals, 13(1), 90. https://doi.org/10.3390/min13010090
  24. Panasyuk, Ya.I., Malikov, V.V., & Talakh, L.A. (2019). Fizyko-mekhanichni vlastyvosti vidvalnykh horilykh shakhtnykh porid dlia dorozhnoho budivnytstvа. Suchasni Tekhnolohii ta Metody Rozrakhunkiv u Budivnytstvi, (11), 99-106.
  25. Rakhimova, G., Stolboushkin, A., Vyshar, O., Stanevich, V., Rakhimov, M., & Kozlov, P. (2023). Strong structure formation of ceramic composites based on coal mining overburden rocks. Journal of Composites Science, 7(5), 209. https://doi.org/10.3390/jcs7050209
  26. Stolboushkin, A., Fomina, O., & Fomin, A. (2016). The investigation of the matrix structure of ceramic brick made from carbonaceous mudstone tailings. IOP Conference Series: Materials Science and Engineering, (124), 012143. https://doi.org/10.1088/1757-899X/124/1/012143
  27. Taha, Y., Elghali, A., Derhy, M., Amrani, M., Hakkou, R., & Benzaazoua, M. (2022) Towards an integrated approach for zero coal mine waste storage: solutions based on materials circularity and sustainable resource governance. Mineral Processing and Extractive Metallurgy Review, 44(10), 375-388. https://doi.org/10.1080/08827508.2022.2084733
  28. Taha, Y., Benzaazoua, M., Hakkou, R., & Mansori, M. (2017). Coal mine wastes recycling for coal recovery and eco-friendly bricks production. Minerals Engineering, (107), 123-138. https://doi.org/10.1016/j.mineng.2016.09.001
  29. Bondarenko, A., Tverda, O., Repin, M., Tkachuk, K., Kofanov, O., & Kofanova, O. (2021). The use of waste from the production of gravel as fertilizer for cultivation of technical energy crops. Technology Audit and Production Reserves, 3(1(59)), 56-58. https://doi.org/10.15587/2706-5448.2021.235198
  30. Balyuk, S., Medvedyev, V., Vorotyntseva, L., & Shymel, V. (2017). Suchasni problemy dehradatsii obhruntuvan i zakhody shchodo dosiahnennia neitralnoho ii rivnia. Visnyk Ahrarnoi Nauky, 95(8), 5-11. https://doi.org/10.31073/agrovisnyk201708-01
  31. Hunko, L., & Berezhna, K. (2021). Problems regarding treatment of disturbed land in Ukraine. Land Management, Cadastre and Land Monitoring, (2), 1-14. https://doi.org/10.31548/zemleustriy2021.02.06
  32. Polovyi, A.M., Hutsal, A.I., & Dronova, O.O. (2013). Hruntoznavstvo. Odesa, Ukraina: Ekolohiia, 668 s.
  33. Osnovy ta pidvalyny budynkiv i sporud. Grunty. Metody laboratornoho vyznachennia koefitsiienta filtratsii: DSTU B V.2.1-23:2009. (2009). Kyiv, Ukraina: Derzhspozhyvstandart Ukrayiny.
  34. Kostenko, V., Bohomaz, O., & Hlushko, I. (2022). Poperedni doslidzhennia mozhlyvosti vykorystannia tverdykh shakhtnykh vidkhodiv v yakosti dobryv. Naukovyi Visnyk DonNTU, 1(8)-2(9), 56-62. https://doi.org/10.31474/2415-7902-2022-1(8)-2(9)-56-62
  35. Kostenko, V.K., Liashok, Ya.O., Hlushko, I.O., Bohomaz, O.P., Zavialova, O.L., Kohtieva, O.P., & Kartavtseva, O.D. (2022). Sposib vyrobnytstva orhano-mineralnoho dobryva. Patent #151740, Ukraina.
  36. Лицензия Creative Commons