Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Geological and geostatistical analysis for equivalent uranium and thorium mineralization, Gattar-V Eastern Desert, Egypt

El Sayed A. Saber1, Ashraf Ismael2,3, Abdelrahem Embaby2, Yehia Z. Darwish2,4, Ehab Gomaa5,6, Ahmed A. Arafat5,6

1Sohag University, Sohag, Egypt

2Al-Azhar University, Cairo, Egypt

3Future University in Egypt, Cairo, Egypt

4Nuclear Materials Authority, Cairo, Egypt

5Suez University, Suez, Egypt

6Taif University, Taif, Saudi Arabia


Min. miner. depos. 2023, 17(4):18-28


https://doi.org/10.33271/mining17.04.018

Full text (PDF)


      ABSTRACT

      Purpose. This paper aims to assess the distribution of uranium and thorium ore grade distribution to produce a uranium potential map and estimate of the uranium ore reserves in the Gattar-V area, Eastern Desert, Egypt.

      Methods. Multidisciplinary approach is applied to determine the equivalent uranium mineralization in the Gattar-V area. It includes geological (petrographical, mineralogical and geochemical) and geostatistical (kriging analysis and variogram models) methods.

      Findings. Geological studies show that the U-mineralization located along or near the contact between younger granites and Hammamat sediments exhibits episyenitization and bleaching alteration, respectively. Geochemical studies indicate a strong relationship between U-mineralization and Chemical Alteration Index (CIA), alteration features, and associated hydrothermal solution mineralization. The geostatistical method is used to study the behavior and distribution of U and Th in both younger granites and Hammamat sediments. The Total Gamma, eU, and eTh values are used in kriging analysis and variogram models to determine their spatial dependence and perform a spatial interpolation of sparse measurements and deposition level map.

      Originality. The use of a multidisciplinary method combining petrographical, mineralogical and geochemical investigations with geostatistical analysis allowed for a quantitative evaluation of the spatial location of geological objects such as uranium mineralization in the area.

      Practical implications. Variogram models and kriging analysis can also be used to assess the lithological composition of rocks and mineralogical phases, and they also provide a clear vision of the elements distributed in the ore, which is very useful during the planning and production stages.

      Keywords: Gattar-V, uranium mineralization, alteration, hydrothermal, kriging analysis, variogram models


      REFERENCES

  1. Ali, B.H., Wilde, S.A., & Gabr, M.M.A. (2009). Granitoid evolution in Sinai, Egypt, based on precise SHRIMP U-Pb zircon geochronology. Gondwana Research, 15(1), 38-48. https://doi.org/10.1016/j.gr.2008.06.009
  2. Hussein, H.A.M., & Sayyah, T.A. (1992). Uranium potential of the younger granites of Egypt. Report No. IAEA-TECDOC-650.
  3. Osmond, J.K., Dabous, A.A., & Dawood, Y.H. (1999). U series age and origin of two secondary uranium deposits, central Eastern Desert, Egypt. Economic Geology, 94(2), 273-280. https://doi.org/10.2113/gsecongeo.94.2.273
  4. El Feky, M.G., El Mowafy, A.A., & Abdel Warith, A. (2011). Mineralogy, geochemistry, radioactivity and environmental impacts of Gabal Marwa granites, southeastern Sinai, Egypt. Chinese Journal of Geochemistry, (30), 175-186. https://doi.org/10.1007/s11631-011-0499-1
  5. Salman, A.B. (1986). New occurrence of uranium mineralization in Gabal Gattar, North Eastern Desert, Egypt. Annals of Geological Survey of Egypt, 31-34.
  6. El Zalaky, M.A. (2018). Uranium potentiality mapping of GV occurrence at Gabal Gattar area, North Eastern Desert, Egypt, using GIS approach. Beni-Suef University Journal of Basic and Applied Sciences, 7(4), 547-558. https://doi.org/10.1016/j.bjbas.2018.06.007
  7. Roz, M.E. (1994). Geology and uranium mineralization of Gabal Gattar area, North Eastern Desert, Egypt. M.Sc. Thesis. Cairo, Egypt: Al-Azhar University, 175 p.
  8. Abdel Hamid, A.A. (2006). Geologic factors controlling the radon emanation associated with uranium mineralization along Wadi Belih, NED, Egypt. M.Sc. Thesis. Benha, Egypt: Benha University, 189 p.
  9. Samanta, B., Bandopadhyay, S., & Ganguli, R. (2006). Comparative evaluation of neural network learning algorithms for ore grade estimation. Mathematical Geology, (38), 175-197. https://doi.org/10.1007/s11004-005-9010-z
  10. Abu Bakarr, J., Sasaki, K., Yaguba, J., Karim, B.A., (2016). Integrating artificial neural networks and geostatistics for optimum 3D geological block modeling in mineral reserve estimation: A case study. International Journal of Mining Science and Technology, 26(4), 581-585. https://doi.org/10.1016/j.ijmst.2016.05.008
  11. Embaby, A., Ismael, A., Ali, A.F., Farag, H.A., Mousa1, B.G., Gomaa, S., & Elwageeh, M. (2023). An approach based on machine learning algorithms, geostatistical technique, and GIS analysis to estimate phosphateore grade at the Abu Tartur Mine, Western Desert, Egypt. Mining of Mineral Deposits, 17(1), 108-119. https://doi.org/10.33271/mining17.01.108
  12. El Rakaiby, M.L., & Shalaby, M.H. (1992). Geology of Gebel Qattar batholith, Central Eastern Desert, Egypt. International Journal of Remote Sensing, 13(12), 2337-2347. https://doi.org/10.1080/01431169208904272
  13. Khalifa, A.A., Khamis, H.A., El-Sayed, M.M., & Shalaby, M.H. (2020). Geology and evolutionary stages of the Late Precambrian Hammamat sediments at Gebel Um Tawat, North Eastern Desert, Egypt. Arabian Journal of Geosciences, (13), 1-19. https://doi.org/10.1007/s12517-020-05323-9
  14. Abu Zaid, M.M. (1995). Relation between surface and subsurface uranium mineralization and structural features, Gebel Gattar, North Eastern Desert, Egypt. M.Sc. Thesis. Cairo, Egypt: Ain Shams University, 17 p.
  15. El-Sayed, M.M., Mohamed, F.H., Furnes, H., & Kanisawa, S. (2002). Geochemistry and petrogenesis of the Neoproterozoic granitoids in the Central Eastern Desert, Egypt. Geochemistry, 62(4), 317-346. https://doi.org/10.1078/0009-2819-00010
  16. Cox, K.G., Bell, J.D., & Pankhurst, R.J. (1979). The interpretation of igneous rocks. London, United Kingdom: Allen and Unwin, 450 p. https://doi.org/10.1007/978-94-017-3373-1
  17. Irvine, T.N., & Baragar, W.R.A. (1971). A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Science, 8(5), 523-548. https://doi.org/10.1139/e71-055
  18. Peccerillo, A., & Taylor, S.R. (1976). Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, (58), 63-81. https://doi.org/10.1007/BF00384745
  19. Chappell, B.W., & White, A.J.R. (1974). Two contrasting granite types. Pacific Geology, (8), 173-174.
  20. Pearce, J.A., Harris, N.B., & Tindle, A.G. (1984). Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4), 956-983. https://doi.org/10.1093/petrology/25.4.956
  21. Maniar, P.D., & Piccoli, P.M. (1989). Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101(5), 635-643. https://doi.org/10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
  22. Pettijohn, F.J., Potter, P.E., & Siever, R. (1973). Sand and sandstones. New York, United States: Springer Verlag, 583 p. https://doi.org/10.1007/978-1-4615-9974-6
  23. Herron, M.M. (1988). Geochemical classification of terrigenous sands and shales from core or log data. Journal of Sedimentary Research, 58(5), 820-829. https://doi.org/10.1306/212F8E77-2B24-11D7-8648000102C1865D
  24. Bracciali, L., Marroni, M., Pandolfi, L., & Rocchi, S. (2007). Geochemistry and petrography of Western Tethys Cretaceous sedimentary covers (Corsica and Northern Apennines): From source areas to configuration of margins. Geological Society of America Special Paper, (420), 73-93. https://doi.org/10.1130/2006.2420(06)
  25. Roser, B.P., & Korsch, R.J. (1988). Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data. Chemical Geology, 67(1-2), 119-139. https://doi.org/10.1016/0009-2541(88)90010-1
  26. Bhatia, M.R. (1983). Plate tectonics and geochemical composition of sandstones. The Journal of Geology, 91(6), 611-627. https://doi.org/10.1086/628815
  27. Mahdy, A.I. (1999). Petrological and geochemical studies on the younger granites and Hammamat sediments at G-V uranium occurrence, Wadi Bali, North Eastern Desert, Egypt. M.Sc. Thesis. Cairo, Egypt: Ain Shams University.
  28. Shalaby, M.H. (1996). Structural controls of uranium mineralizations at Gabal Qattar, North Eastern Desert, Egypt. Proceedings of the Egyptian Academy of Sciences, (46), 521-536.
  29. Webster, R., & Oliver, M.A. (2007). Geostatistics for environmental scientists. Chichester, United Kingdom: John Wiley & Sons, 317 p. https://doi.org/10.1002/9780470517277
  30. Mustafa, M.R., Rezaur, R.B., Saiedi, S., & Isa, M.H. (2012). River suspended sediment prediction using various multilayer perceptron neural network training algorithms – A case study in Malaysia. Water Resources Management, (26), 1879-1897. https://doi.org/10.1007/s11269-012-9992-5
  31. Shalaby, M.H., (1996). New occurrence of uranium mineralizations, G-VII, Gabal Qattar Uranium prospect, North Eastern Desert, Egypt. Bulletin of the Faculty of Science, Assiut University, 35(2), 447-460.
  32. El Zalaky, M.A. (2002). In interplay of plutonism, faulting, and mineralization, Northern Gabal Qattar peripheral zone, North Eastern Desert, Egypt. M.Sc. Thesis. Benha, Egypt: Benha University, 178 p.
  33. Nesbitt, H.W., & Young, G.M. (1984). Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimica et Cosmochimica Acta, 48(7), 1523-1534. https://doi.org/10.1016/0016-7037(84)90408-3
  34. Nesbitt, H.W., & Young, G.M. (1989). Formation and diagenesis of weathering profiles. The Journal of Geology, 97(2), 129-147. https://doi.org/10.1086/629290
  35. Saber, E.S.A. (2020). Gold resources from clastic Cambrian rocks and their link with underlying Precambrian rocks, Southern Sinai, Egypt. Arabian Journal of Geosciences, (13), 529. https://doi.org/10.1007/s12517-020-05526-0
  36. Saber, E.S., Ali, M., & El-Sheikh, A. (2018). Provenance studies of Kalabsha kaolin deposits, Egypt: A petrographical and geochemical approach. Arabian Journal of Geosciences, (11), 339. https://doi.org/10.1007/s12517-018-3690-4
  37. Meyer, C., & Hemley, J.J. (1967). Wall rock alteration. Geochemistry of Hydrothermal Ore Deposits, 166-232.
  38. Le Maitre, R.W., Bateman, P., Dubek, A., Keller, J., & Lameyre, J. (1989). A classification of igneous rocks and glossary of terms: Recommendations of the International Union of Geological sciences subcommisson on the systematics of igneous rocks. Oxford, United Kingdom: Black-Well Scientific Publications.
  39. Large, R.R., Allen, R.L., Blake, M.D., & Herrmann, W. (2001). Hydrothermal alteration and volatile element halos for the Rosebery K lens volcanic-hosted massive sulfide deposit, Western Tasmania. Economic Geology, 96(5), 1055-1072. https://doi.org/10.2113/gsecongeo.96.5.1055
  40. Cuney, M. (2009). The extreme diversity of uranium deposits. Mineralium Deposita, (44), 3-9. https://doi.org/10.1007/s00126-008-0223-1
  41. Cuney, M., & Kyser, K. (2008). Recent and not-so-recent developments in uranium deposits and implications for exploration. Mineralogical Association of Canada Short Course Series, (39), 258.
  42. Mahdy, N.M. (2011). Mineralogical studies and mineral chemistry of some radioactive mineralizations in Gabal Gattar Area, Northern Eastern Desert, Egypt. Ph.D. Thesis. Cairo, Egypt: Ain Shams University.
  43. Large, R.R., Gemmell, J.B., Paulick, H., & Huston, D.L. (2001). The alteration box plot: A simple approach to understanding the relationship between alteration mineralogy and lithogeochemistry associated with volcanic-hosted massive sulfide deposits. Economic Geology, 96(5), 957-971.https://doi.org/10.2113/96.5.957
  44. Wilde, A., Otto, A., Jory, J., MacRae, C., Pownceby, M., Wilson, N., & Torpy, A. (2013). Geology and mineralogy of uranium deposits from Mount Isa, Australia: Implications for albitite uranium deposit models. Minerals, 3(3), 258-283.https://doi.org/10.3390/min3030258
  45. Лицензия Creative Commons