Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Mining of non-metallic mineral deposits in the context of Ukraine’s reconstruction in the war and post-war periods

Pavlo Saik1, Oleksii Cherniaiev1, Oleh Anisimov1, Roman Dychkovskyi1, Andrii Adamchuk1

1Dnipro University of Technology, Dnipro, Ukraine


Min. miner. depos. 2023, 17(4):91-102


https://doi.org/10.33271/mining17.04.091

Full text (PDF)


      ABSTRACT

      Purpose. The research purpose is to study the conditions for mining deposits of metamorphic and igneous origin to produce crushed stone products in conditions of limited electricity supply.

      Methods. The research uses an integrated approach, including data analysis on quarry field spatial dimensions and the overburden rock thickness, which provides the basis for identifying deposits into basic groups. For the identified groups of deposits, taking into account the hydrological characteristics of non-metallic deposits and their parameters, patterns have been determined that characterize the change in the normative atmospheric precipitation inflow, based on the quarry field area and the change in the specific costs for water drainage depending on the studied quarry field type. Based on data on technical characteristics of mobile and semi-stationary units and aggregates, the parameters of physical-mechanical properties of granites and diorites, technical-technological solutions for the formation of complexes for processing raw materials for the production of crushed stone products are proposed.

      Findings. Problems arising during mining operations under conditions of limited electricity supply, which is caused by mass attacks on Ukraine’s energy infrastructure, have been revealed. A systematization of deposits of igneous and metamorphic origin for mining of rock building materials, which are the basis for the production of crushed stone products, has been developed. The rates of water inflow into the mined-out space depending on the quarry field spatial parameters and the depth of mining operations have been studied. Technological schemes of the apparatuses of a complex for processing raw materials for production of crushed stone products and the apparatuses of a complex for processing siftings are proposed.

      Originality. Dependences of possible water inflow into the mined-out space of the quarry and change in energy consumption for water drainage have been determined, taking into account the accepted classification criteria, namely the quarry field spatial dimensions, the overburden rock thickness and the quarry depth.

      Practical implications. The obtained data on the possible water inflow into the mined-out space of the quarry and change in energy consumption for water drainage make it possible to assess the efficiency of pumping units. The proposed technical-technological solutions on formation of complexes for processing raw materials to produce crushed stone products have been developed in accordance with the fundamental provisions of the Law of Ukraine “On approval of the National program for the development of the mineral resource base of Ukraine for the period up to 2030”.

      Keywords: non-metallic deposits, minerals, raw materials, quarry, water inflow, crushing-screening plant, crushed stone


      REFERENCES

  1. Martynovych, N., Yemchenko, I., & Kulinich, T. (2023). From the territory of recovery to sustainable development: a methodological concept of effective socio-economic development of Ukraine after the war development. Problems of Sustainable Development, 18(2), 13-25. https://doi.org/10.35784/preko.3923
  2. Shumilova, O., Tockner, K., Sukhodolov, A., Khilchevskyi, V., De Meester, L., & Gleick, P. (2023). Impact of the russia-Ukraine armed conflict on water resources and water infrastructure. Nature Sustainability, 6(5), 578-586. https://doi.org/10.1038/s41893-023-01068-x
  3. Bondarenko, V., Salieiev, I., Kovalevska, I., Chervatiuk, V., Malashkevych, D., Shyshov, M., & Chernyak, V. (2023). A new concept for complex mining of mineral raw material resources from DTEK coal mines based on sustainable development and ESG strategy. Mining of Mineral Deposits, 17(1), 1-16. https://doi.org/10.33271/mining17.01.001
  4. Ptashchenko, L., Svistun, L., Khudolii, Y., & Huseynov, A. (2022). Construction technologies and investments in reconstruction of the national economy of Ukraine. International Conference Building Innovations, 813-823. https://doi.org/10.1007/978-3-031-17385-1_69
  5. Zakharchenko, V.I. (2022). Restoration of Ukraine from the consequences of the war by means of neo-economy: Sectoral and spatial approaches. Ukrainian Geographical Journal, 4(120), 23-36. https://doi.org/10.15407/ugz2022. 04.023
  6. Kirsanov, A.K., Volkov, E.P., Shkaruba, N.A., Nikolaeva, N.V., & Teshaev, U.R. (2022). Issues of market monopolization in the mining of non-metallic minerals in transition economies. Journal of Degraded & Mining Lands Management, 9(3), 3475-3486. https://doi.org/10.15243/jdmlm.2022.093.3475
  7. Cherniaiev, O.V. (2017). Systematization of the hard rock non-metallic mineral deposits for improvement of their mining technologies. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 11-17.
  8. Khaietska, O., Holovnia, О., Pavlyuk, T., & Osipova, L. (2023). Branch structure of the national economy and directions of its optimization in the post-war period. Economics. Ecology. Socium, 7(3), 1-12. https://doi.org/10.31520/2616-7107/2023.7.3-1
  9. Irtyshcheva, I., Kramarenko, I., & Sirenko, I. (2022). The economy of war and postwar economic development: World and Ukrainian realities. Baltic Journal of Economic Studies, 8(2), 78-82. https://doi.org/10.30525/2256-0742/2022-8-2-78-82
  10. Atstāja, D., Koval, V., Purviņš, M., Butkevičs, J., & Mikhno, I. (2022). Construction waste management for improving resource efficiency in the reconstruction of war-destroyed objects. Economics. Ecology. Socium, 6(2), 46-57. https://doi.org/10.31520/2616-7107/2022.6.2-5
  11. Dychkovskyi, R.O., Avdiushchenko, A.S., Falshtynskyi, V.S., & Saik, P.B. (2013). On the issue of estimation of the coal mine extraction area economic efficiency. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 107-114.
  12. Bondarenko, V., Cherniak, V., Cawood, F., & Chervatiuk, V. (2017). Technological safety of sustainable development of coal enterprises. Mining of Mineral Deposits, 11(2), 1-11. https://doi.org/10.15407/mining11.02.001
  13. Bondarenko, V.I., Griadushchiy, Y.B., Dychkovskiy, R.O., Korz, P.P., & Koval, O.I. (2007). Advanced experience and direction of mining of thin coal seams in Ukraine. Technical, Technological and Economic Aspects of Thin-Seams Coal Mining, 1-7.
  14. Bariatska, N.V. (2020). The concept of critical minerals as a mean of stimulate the development of subsoil use in Ukraine. Mineral Resources of Ukraine, (2), 13-18. https://doi.org/10.31996/mru.2020.2.13-18
  15. Horoshkova, L., Volkov, V., & Khlobystov, I. (2019). Prognostic model of mineral resources development in Ukraine. Monitoring, (1), 1-5. https://doi.org/10.3997/2214-4609.201903171
  16. Petlovanyi, M., Saik, P., Lozynskyi, V., Sai, K., & Cherniaiev, O. (2023). Substantiating and assessing the stability of the underground system parameters for the sawn limestone mining: Case study of the Nova Odesa deposit, Ukraine. Inżynieria Mineralna, 1(1(51)), 79-89. http://doi.org/10.29227/IM-2023-01-10
  17. Malanchuk, Z., Korniyenko, V., Malanchuk, Y., Khrystyuk, A., & Kozyar, M. (2020). Identification of the process of hydromechanical extraction of amber. E3S Web of Conferences, (166), 02008. https://doi.org/10.1051/e3sconf/202016602008
  18. Khodosovtsev, A., Darmostuk, V., Prylutskyi, O., & Kuzemko, A. (2022). Silicicolous lichen communities of the Ukrainian Crystalline Shield. Applied Vegetation Science, 25(4), e12699. https://doi.org/10.1111/avsc.12699
  19. Khomenko, O.Y., & Kononenko, M.M. (2019). Geo-energetics of Ukrainian crystalline shield. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (3), 12-21. https://doi.org/10.29202/nvngu/2019-3/3
  20. Shamrai, V., Melnyk-Shamrai, V., Leonets, I., Korobiichuk, V., & Lutsenko, S. (2023). Quality index control for building products made of natural facing stone. Mining of Mineral Deposits, 17(3), 12-21. https://doi.org/10.33271/mining17.03.012
  21. Lomakin, I., Sarvirov, E., & Kochelab, V. (2023). Features of gold placer formation in the Ukrainian Crystalline Shield and Southern Ukraine. Earth Sciences and Human Constructions, (3), 90-98. https://doi.org/10.37394/232024.2023.3.8
  22. Voloshko, N. (2022). Analysis of the state and trends of the world market of building materials. Black Sea Economic Studies, (75), 7-12. https://doi.org/10.32843/bses.75-1
  23. Ievdokymov, V., Lehenchuk, S., Zakharov, D., Andrusiv, U., Usatenko, O., & Kovalenko, L. (2020). Social capital measurement based on “The value explorer” method. Management Science Letters, 10(6), 1161-1168. https://doi.org/10.5267/j.msl.2019.12.002
  24. Krat, V., & Arckipova, O. (2023). Brak kadriv ta defitsyt materialiv: Yak vidnovliuietsia rynok budivnytstva zhytla ta chy podorozhchaiut kvartyry. Retrieved from: https://unn.ua/news/brak-kadriv-ta-defitsit-materialiv-yak-vidnovlyuyetsya-rinok-budivnitstva-zhitla-ta-chi-podorozhchayut-kvartiri
  25. Yelemessov, K., Baskanbayeva, D., Martyushev, N.V., Skeeba, V.Y., Gozbenko, V.E., & Karlina, A.I. (2023). Change in the properties of rail steels during operation and reutilization of rails. Metals, 13(6), 1043. https://doi.org/10.3390/met13061043
  26. Algiev, S., Turegeldinova, A., & Chowdhury, D. (2013). Knowledge share incentive: Exploring opportunities in railway service provider. Actual Problems of Economics, 141(3), 205-209.
  27. Moldagozhina, M.K., Krupnik, L., Koptileuovich, Y.K., Mukhtar, E., & Roza, A. (2016). The system is “roof bolting-mountain”. International Journal of Applied Engineering Research, 11(21), 10454-10457.
  28. Abdullayev, S.S., Bondar, I.S., Bakyt, G.B., Ashirbayev, G.K., Budiukin, A.M., & Baubekov, Y.Y. (2021). Interaction of frame structures with rolling stock. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 1(445), 22-28. https://doi.org/10.32014/2021.2518-170X.3
  29. Malanchuk, Z., Zaiets, V., Tyhonchuk, L., Moshchych, S., Gayabazar, G., & Dang, P. T. (2021). Research of the properties of quarry tuff-stone for complex processing. E3S Web of Conferences, (280), 01003. https://doi.org/10.1051/e3sconf/202128001003
  30. Moshynskyi, V., Zhomyruk, R., Vasylchuk, O., Semeniuk, V., Okseniuk, R., Rysbekov, K., & Yelemessov, K. (2021). Investigation of technogenic deposits of phosphogypsum dumps. E3S Web of Conferences, (280), 08008. https://doi.org/10.1051/e3sconf/202128008008
  31. Heleta, O. (2008). Ukrainskyi rynok shchebeniu z pryrodnoho kaminnia. Koshtovne ta Dekoratyvne Kaminnia, (3), 3-11.
  32. Cui, L., Yue, S., Nghiem, X.H., & Duan, M. (2023). Exploring the risk and economic vulnerability of global energy supply chain interruption in the context of russo-Ukrainian war. Resources Policy, (81), 103373. https://doi.org/10.1016/j.resourpol.2023.103373
  33. Misiągiewicz, J. (2022). Energy market in contemporary international relations: Main threats and challenges. Barometr Regionalny. Analizy i Prognozy, 18(2), 7-21. https://doi.org/10.56583/br.2048
  34. Aitkazinova, S.K., Derbisov, K.N., Donenbayeva, N.S., Nurpeissova, M., & Levin, E. (2020). Preparing solutions based on industrial waste for fractured surface strengthening. News of the National Academy of Sciences of the Republic of Kazakhstan, 5(443), 13-17. https://doi.org/10.32014/2020.2518-170X.99
  35. Plichko, L.V., Zatserkovnyi, V.I., Khilchevskyi, V.K., Mizernaya, M., & Bakytzhan, A. (2020). Assessment of changes a number of surface water bodies within the sub-basin of the Desna River using remote sensing materials. Geoinformatics: Theoretical and Applied Aspects, (1), 1-5. https://doi.org/10.3997/2214-4609.2020geo101
  36. Beshta, O.S., Fedoreiko, V.S., Palchyk, A.O., & Burega, N.V. (2015). Autonomous power supply of the objects based on biosolid oxide fuel systems. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 67-73.
  37. Beshta, A., Balakhontsev, A., & Khudolii, S. (2019). Performances of asynchronous motor within variable frequency drive with additional power source plugged via combined converter. IEEE 6th International Conference on Energy Smart Systems, 156-160. https://doi.org/10.1109/ESS.2019.8764192
  38. Chubenko, V.A., Khinotskaya, A., Yarosh, T., Saithareiev, L., & Baskanbayeva, D. (2022). Investigation of energy-power parameters of thin sheets rolling to improve energy efficiency. IOP Conference Series: Earth and Environmental Science, (1049), 012051. https://doi.org/10.1088/1755-1315/1049/1/012051
  39. Kulikov, P., Aziukovskyi, O., Vahonova, O., Bondar, O., Akimova, L., & Akimov, O. (2022). Post-war economy of Ukraine: Innovation and investment development project. Economic Affairs, 67(5), 943-959. https://doi.org/10.46852/0424-2513.5.2022.30
  40. Pivnyak, G., Bondarenko, V., Kovalevs’ka, I., & Illiashov, M. (2012). Geomechanical processes during underground mining. London, United Kingdom: CRC Press, 238 p. https://doi.org/10.1201/b13157
  41. Taran, I.A., & Klymenko, I.Y. (2014). Innovative mathematical tools for benchmarking transmissions of transport vehicles. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (3), 76-81.
  42. Taran, I.A. (2012). Laws of power transmission on branches of double-split hydrostatic mechanical transmissions. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 69-75.
  43. Sokur, M.I., Biletskyi, V.S., Hnieushev, V.O., & Bozhyck, D.P. (2018). Theoretical and practical aspects of the high-quality cube-shaped crushed stone production. Visnyk Natsionalnoho Universytetu Vodnoho Hospodarstva ta Pryrodokorystuvannia, 3(79), 87-95.
  44. Abdullayev, S., Tokmurzina, N., & Bakyt, G. (2016). The determination of admissible speed of locomotives on the railway tracks. Transport Problems, 11(1), 61-68. https://doi.org/10.20858/tp.2016.11.1.6
  45. Bakyt, G.B., Seidemetova, Z.S., Abdullayev, S.S., Adilova, N.J., Kamzina, A.D., & Aikumbekov, M.N. (2020). Create a traffic control information space in the logistics environment. Journal of Advanced Research in Law and Economics, 11(2), 290-300. https://doi.org/10.14505/jarle.v11.2(48).03
  46. Abdullayev, S.S., Bakyt, G.B., Aikumbekov, M.N., Bondar, I.S., & Auyesbayev, Y.T. (2021). Determination of natural modes of railway overpasses. Journal of Applied Research and Technology, 19(1), 1-10. https://doi.org/10.22201/icat.24486736e.2021.19.1.1487
  47. Singh, S.P., & Narendrula, R. (2006). Factors affecting the productivity of loaders in surface mines. International Journal of Surface Mining, Reclamation and Environment, 20(01), 20-32. https://doi.org/10.1080/13895260500261574
  48. Sardak, S.E., Krupskyi, O.P., Korotun, S.I., & Reshetniak, D.E. (2019). Commercialization of the nature-resource potential of anthropogenic objects (on the example of exhausted mines and quarries). Journal of Geology, Geography and Geoecology, 28(1), 180-187. https://doi.org/https://doi.org/10.15421/111919
  49. Kyrgizbayeva, G., Nurpeisov, M., & Sarybayev, O. (2015). The monitoring of earth surface displacements during the subsoil development. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 161-167. https://doi.org/10.1201/b19901-30
  50. Liu, J. B., Dai, H. Y., Wang, X., Shynar, A., & Madimarova, G. (2014). Three-dimensional geological modeling of mining subsidence prediction based on the blocks. Advanced Materials Research, (905), 697-701. https://doi.org/10.4028/www.scientific.net/AMR.905.697
  51. Strzałkowski, P., & Kaźmierczak, U. (2019). The scope of reclamation works for areas after the exploitation of rock raw materials. Applied Sciences, 9(6), 1181. https://doi.org/10.3390/app9061181
  52. Koptieva, T.S. (2023). The reclamation of the surface layer of mining landscapes of Kryvyi Rih landscape technical system. Man and Environment. Issues of Neoecology, (39), 55-64. https://doi.org/10.26565/1992-4224-2023-39-05
  53. Hancock, G.R., Duque, J.M., & Willgoose, G.R. (2020). Mining rehabilitation – Using geomorphology to engineer ecologically sustainable landscapes for highly disturbed lands. Ecological Engineering, (155), 105836. https://doi.org/10.1016/j.ecoleng.2020.105836
  54. Aitkazinova, S.K., Nurpeisova, M.B., Kirgizbaeva, G.M., & Milev, I. (2014). Geomechanical monitoring of the massif of rocks at the combined way of development of fields. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, 2(2), 279-292.
  55. Bazaluk, O., Anisimov, O., Saik, P, Lozynskyi, V., Akimov, O., & Hrytsenko, L. (2023). Determining the safe distance for mining equipment operation when forming an internal dump in a deep open pit. Sustainability, 15(7), 5912. https://doi.org/10.3390/su15075912
  56. Abdullayeva, A., Kalabayeva, A., Ivanov, A., Abdullayev, S., & Bakyt, G. (2022). Methods for identification of complex industrial control objects on their accelerating characteristics. Communications, 24(3), 239-246. https://doi.org/10.26552/com.C.2022.3.B239-B246
  57. Saik, P., Cherniaiev, O., Anisimov, O., & Rysbekov, K. (2023). Substantiation of the direction for mining operations that develop under conditions of shear processes caused by hydrostatic pressure. Sustainability, 15(22), 15690. https://doi.org/10.3390/su152215690
  58. Syvyj, M.J., Ivanov, Y.A., Panteleeva, N.B., & Varakuta, O.M. (2023). The problem of rational use of mineral resources and mining waste in the context of sustainable development of regions. IOP Conference Series: Earth and Environmental Science, 1254(1), 012134. https://doi.org/10.1088/1755-1315/1254/1/012134
  59. Sobko, B., Haidin, A., Lozhnikov, O., & Jarosz, J. (2019). Method for calculating the groundwater inflow into pit when mining the placer deposits by dredger. E3S Web of Conferences, (123), 01025. https://doi.org/10.1051/e3sconf/201912301025
  60. Pavlychenko, A., Kulikova, D., & Borysovska, O. (2022). Substantiation of technological solutions for the protection of water resources in the development of coal deposits. IOP Conference Series: Earth and Environmental Science, 970(1), 012038. https://doi.org/10.1088/1755-1315/970/1/012038
  61. Sobko, B., Lozhnikov, O., & Drebenshtedt, C. (2020). Investigation of the influence of flooded bench hydraulic mining parameters on sludge pond formation in the pit residual space. E3S Web of Conferences, (168), 00037. https://doi.org/10.1051/e3sconf/202016800037
  62. Shustov, O.O., Bielov, O.P., Perkova, T.I., & Adamchuk, A.A. (2018). Substantiation of the ways to use lignite concerning the integrated development of lignite deposits of Ukraine. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (3), 5-13. https://doi.org/10.29202/nvngu/2018-3/6
  63. Babets, Y.K., Bielov, O.P., Shustov, O.O., Barna, T.V., & Adamchuk, A.A. (2019). The development of technological solutions on mining and processing brown coal to improve its quality. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 36-44. https://doi.org/10.29202/nvngu/2019-6/6
  64. Sladkowski, A., Utegenova, A., Elemesov, K., & Stolpovskikh, I. (2017). Determining of the rational capacity of a bunker for cyclic-and-continuous technology in quarries. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 29-33.
  65. Lopes, L., Martins, R., Pinho, A., Duarte, I., & Faria, P. (2022). Dimension stone quarries risk assessment Estremoz marbles. International Workshop on Natural Hazards, 1-10. https://doi.org/10.1007/978-3-031-25042-2_28
  66. Dzyubyk, A., Sudakov, A., Dzyubyk, L., & Sudakova, D. (2019). Ensuring the specified position of multisupport rotating units when dressing mineral resources. Mining of Mineral Deposits, 13(4), 91-98. https://doi.org/10.33271/mining13.04.091
  67. Kieush, L. (2019). Coal pyrolysis products utilisation for synthesis of carbon nanotubes. Petroleum and Coal, 61(3), 461-466.
  68. Burshukova, G., Kanazhanov, A., Abuova, R., & Joldassov, A. (2023). Analysis of Using Damping Alloys to Improve Vibration and Strength Characteristics in the Automotive Industry. Evergreen, 10(2), 742-751. https://doi.org/10.5109/6792824
  69. Abuova, R.Z., Suleyev, D.K., & Burshukova, G.A. (2022). Study of damping properties of alloyed steels with ceramic-metallic nanostructured coating for critical parts. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 3(453), 52-65. https://doi.org/10.32014/2022.2518-170X.179
  70. Sobko, B., & Kriachek, V. (2022). Establish of the optimum parameters of the Pinyazevytsky granite deposit mining system. Collection of Research Papers of the National Mining University, (71), 17-28. https://doi.org/10.33271/crpnmu/71.017
  71. Sobko, B., Lozhnikov, O., & Drebenshtedt, C. (2020). Investigation of the influence of flooded bench hydraulic mining parameters on sludge pond formation in the pit residual space. E3S Web of Conferences, (168), 00037. https://doi.org/10.1051/e3sconf/202016800037
  72. Motyka, J., d’Obyrn, K., Kasprzak, A., & Szymkiewicz, A. (2018). Sources of groundwater inflows into the “Czatkowice” limestone quarry in southern Poland. Archives of Mining Sciences, 63(2), 417-424. https://doi.org/10.24425/122455
  73. Eang, K.E., Igarashi, T., Fujinaga, R., Kondo, M., & Tabelin, C.B. (2018). Groundwater monitoring of an open-pit limestone quarry: groundwater characteristics, evolution and their connections to rock slopes. Environmental Monitoring and Assessment, (190), 1-15. https://doi.org/10.1007/s10661-018-6561-2
  74. Yelemessov, K., Krupnik, L., Bortebayev, S., Beisenov, B., Baskanbayeva, D., & Igbayeva, A. (2020). Polymer concrete and fibre concrete as efficient materials for manufacture of gear cases and pumps. E3S Web of Conferences, (168), 00018. https://doi.org/10.1051/e3sconf/202016800018
  75. Krupnik, L., Yelemessov, K., Bortebayev, S., & Baskanbayeva, D. (2018). Studying fiberreinforced concrete for casting housing parts of pumps. Eastern-European Journal of Enterprise Technologies, 6(12(96)), 22-27. https://doi.org/10.15587/1729-4061.2018.151038
  76. Li, Y., Zhang, Q., Kamiński, P., Deifalla, A. F., Sufian, M., Dyczko, A., & Atig, M. (2022). Compressive strength of steel fiber-reinforced concrete employing supervised machine learning techniques. Materials, 15(12), 4209. https://doi.org/10.3390/ma15124209
  77. Symonenko, V., Hrytsenko, L., & Cherniaiev, O. (2016). Organization of non-metallic deposits development by steep excavation layers. Mining of Mineral Deposits, 10(4), 68-73. https://doi.org/10.15407/mining10.04.068
  78. Report of scientific-research work. (2013). Rozrobka tekhnolohichnykh, upravlinskykh rishen, normatyvnoi dokumentatsii, systemy ekolohichnoho monitorynhu shchodo pryrodookhoronnoi diialnosti hirnychykh pidpryiemstv. Dnipropetrovsk, Ukraine: NMU.
  79. Khokhlov, V.M., Borovska, H.O., & Zamfirova, M.S. (2020). Climatic changes and their influence on air temperature and precipitation in Ukraine during transitional seasons. Ukrainian Hydrometeorological Journal, (26), 60-67. https://doi.org/10.31481/uhmj.26.2020.05
  80. Report of working project. (2014). Rabochyi proekt razrabotky Mala-Kakhnovskoho mestorozhdenyia: vozobnovlenye hornykh rabot. Kyiv, Ukraine: LLC “NVP “Ukrgeologstrom”.
  81. Report of working project. (2014). Korrektyrovka rabocheho proekta razrabotky Sofyevskoho mestorozhdenyia: proekt rekonstruktsyy razrabotky Sofyevskoho shchebenochnoho kar’era. Dnipro, Ukraine: Institute for the Design of Mining Enterprises.
  82. Report of working project. (2016). Dopovnennia do robochoho proektu rozrobky Liubymivskoho rodovyshcha hranitiv: vidpratsiuvannia pryroshchenykh zapasiv. Dnipro, Ukraine: Institute for the Design of Mining Enterprises.
  83. Лицензия Creative Commons