Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Deformation as a process to transform shape and volume of protective structures of the development mine workings during coal-rock mass off-loading

Daria Chepiga1, Iryna Bessarab1, Vitalii Hnatiuk2, Oleksandr Tkachuk1, Oleksandr Kipko1, Serhii Podkopaiev1

1Donetsk National Technical University, Lutsk, Ukraine

2PJSC “Pokrovske Mine Management”, Pokrovsk, Ukraine


Min. miner. depos. 2023, 17(4):1-11


https://doi.org/10.33271/mining17.04.001

Full text (PDF)


      ABSTRACT

      Purpose is to assess deformation characteristics of protective structures while coal-rock mass off-loading to ensure wall rock stability as well as operating conditions of the development mine workings in coal mines.

      Methods. In a laboratory environment, uniaxial compression of protective structures has been applied on the models to identify the influence by deformation processes on the changes in their rigidness resulting from the shape and volume transformation.

      Findings. Under the deformation of rigid structures in the context of a safe strain resource, potential energy of their changes in shape is 4.1-6.5 times higher than the one of changes in volume. Beyond the safe deformation resource when critical level of the specific potential strain energy has been exceeded, strength of protective structures is not sufficient to restrict wall rock movement limiting their use. If relative volume variation in the rigid protective structures is δV > 0.06-0.082 then they lose their stability. Under such conditions, structural rigidity decreases by 14-22%. If pliable wooden protective structures are used then relative 0.62 ≤ δV ≤ 0.72 volume change doubles their rigidity. In the circumstances, the potential shape change energy is 2.1 times higher than the volume change energy; the abovementioned favours temporary compaction of wooden components of the compressive structure while improving its resistivity.

      Originality. Regularities of changes in the specific potential deformation energy of protective structures depending upon their shape and volume variation in terms of uniaxial compression have been identified.

      Practical implications. To ensure stability of wall rocks and maintain operating conditions of the development mine wor-kings, it is reasonable to apply pliable wooden protective structures which will help restrict roof and floor movements after their compaction. Insufficient residual strength of rigid protective structures, resulting if they lose their stability, provokes rock failure within the working areas of coal mines.

      Keywords: deformation, rigidity, protective structures, development mine workings, uniaxial compression, bearing capacity, potential energy


      REFERENCES

  1. Nikolin, V.I., Podkopayev, S.V., & Agafonov, A.V. (2005). Snizheniye travmatizma ot proyavleniya gornogo davleniya. Donetsk, Ukraina: Nord-press, 332 s.
  2. Tereshchuk, R.N., & Lozovsky, S.P. (2014). Ustoychivost’ podgotovitel’nykh vyrabotok s neustoychivoy pochvoy v zone vliyaniya ochistnykh rabot. Dnipro, Ukraina: NGU, 103 s.
  3. Karkashadze, G.G. (2004). Mekhanicheskoe razrushenie gornykh porod. Moskva, Rossiya: MGGU Publ, 112 s.
  4. Parton, V.Z., & Morozov, E.M. (1974). Mekhanika uprugoplasticheskogo razrusheniya. Moskva, Rossiya: Nauka, 416 s.
  5. Kurdyumov, S.P. (2006). Rezhimy s obostreniem. Evolyutsiya idei. Moskva, Rossiya: Fizmatlit, 308 s.
  6. Sakhno, I., Sakhno, S.V., & Kamenets, V.I. (2022). Stress environment around head entries with pillarless godside entry retaining through numerical simulation incorporating the two type of filling wall. IOP Conference Series: Earth and Environmental Science, 1049(1), 012011. https://doi.org/10.1088/1755-1315/1049/1/012011
  7. Yalanskiy, A.O., Slashchov, І.M., Slashchova, O.A., Seleznov, A.M., & Arestov, V.V. (2018). Development of new auxiliary measures for protecting preparatory roadways by the cast strips. Geotechnical Mechanics, (141), 3-17. https://doi.org/10.15407/geotm2018.141.003
  8. Negrey, S.G., Mokrienko, V.N., & Kurdyumov, D.N. (2013). Izuchenie vliyaniya formy okhrannogo sooruzheniya, vozvodimogo vdol’ podgotovitel’noy vyrabotki, provedennoy vsled za lavoy, na mekhanizm smeshcheniy podstilayushchikh ego porod. Prospects for the Development of Building Technologies, 65-68.
  9. Nehrii, S., Nehrii, T., Zolotarova, O., Aben, K., & Yussupov, K. (2021). Determination of the parameters of local reinforced zones under the protection means. E3S Web of Conferences, (280), 08018. https://doi.org/10.1051/e3sconf/202128008018
  10. Nehrii, S., Nehrii, T., & Yefremov, I. (2020). Determination of parameters of detached rock packs with compensation voids. Journal of Donetsk Mining Institute, (2), 58-71. https://doi.org/10.31474/1999-981x-2020-2-58-71
  11. Zaslavsky, I.Yu., Kompaniets, V.F., Faivishchenko, A.G., & Kleschenkov, V.M. (1991). Povyshenie ustoychivosti podgotovitel’nykh vyrabotok ugol’nykh shakht. Moskva, Rossiya: Nedra, 235 s.
  12. Kazanin, O.I., Dolotkin, Yu.N., & Skrylnikov, I.V. (2011). Ispol’zovanie okhrannykh sooruzheniy dlya podderzhaniya vyemochnykh vyrabotok na ugol’nykh shakhtakh. Mining Information and Analytical Bulletin, (1), 34-39.
  13. Chen, H.P., & Doong, J.L. (1983). Postbuckling behavior of a thick plate. AIA Journal, 21(8), 1157-1161. https://doi.org/10.2514/3.8220
  14. Hahn, H.T., & Williams, J.F. (1986). Compression failure mechanisms in unidirectional composites. Composite Materials, 115-139.
  15. Vildeman, V.E., & Tretyakov, V.P. (2013). Ispytaniya materialov s postroeniem polnykh diagramm deformirovaniya. Problems of Mechanical Engineering and Reliability of Machines, (5), 93-98.
  16. Cai, L., Wu, K., Qisheng, Y., & Jinpeng, F. (2011). A new method of equivalent material model deformation observation. International Journal of Modern Education and Computer Science, 3(5), 40-46. https://doi.org/10.5815/ijmecs.2011.05.06
  17. Xie, G., Wang, L., & Luo, Y. (2010). Analysis on characteristics of damaged field of surrounding rock and face of FMTC. Journal of Coal Science & Engineering (China), (16), 120-124. https://doi.org/10.1007/s12404-010-0202-x
  18. Cui, F., Jia, C., & Lai, X. (2019). Study on deformation and energy release characteristics of overlying strata under different mining sequence in close coal seam group based on similar material simulation. Energies, 12(23), 4485. https://doi.org/10.3390/en12234485
  19. Taskinen, P., He, W., & Xu, Z. (2020). Study on law of overlying strata breakage and migration in downward mining of extremely close coal seams by physical similarity simulation. Advances in Civil Engineering, 2898971. https://doi.org/10.1155/2020/2898971
  20. Yang, H., Zhongping, G., Chen, D., Wang, C., Zhang, F., & Du, Z. (2020). Study on reasonable roadway position of working face under strip coal pillar in rock burst mine. Rock Burst in Underground Engineering: Experiments and Analysis, 8832791. https://doi.org/10.1155/2020/8832791
  21. Zhang, G., Guo, G., Lv, Y., & Gong, Y. (2020). Study on the strata movement rule of the ultrathick and weak cementation overburden in deep mining by similar material simulation: a case study in China. Mathematical Problems in Engineering, 7356740. https://doi.org/10.1155/2020/7356740
  22. Shashenko, A.N., Pustovoi, V.P., & Sdvizhnikova, E.A. (2015). Geomekhanika. Dnipro, Ukraina: 560 s.
  23. Inshibashi, I., & Hazarika, H. (2015). Soil mechanics fundamentals and applications. London, United Kingdom: CRC Press, 432 p. https://doi.org/10.1201/b18236
  24. Robitaille, V., & Tremblay, D. (2001). Mecanique des sols: Theorie et pratique. Paris, France: Modulo, 680 p.
  25. Tkachuk, O., Chepiga, D., Pakhomov, S., Volkov, S., Liashok, Y., Bachurina, Y., & Podkopaiev, S. (2023). Evaluation of the effectiveness of secondary support of haulage drifts based on a comparative analysis of the deformation characteristics of protective structures. Eastern-European Journal of Enterprise Technologies, 2(1(122)), 73-81. https://doi.org/10.15587/1729-4061.2023.272454
  26. Stupishin, L.Yu. (2011). Variacionnyy kriteriy kriticheskikh urovney vnutrenney ehnergii deformacionnogo tela. Industrial and Civil Construction, (8), 21-23.
  27. Nasonov, I.D. (1978). Modeling of mining processes. Nedra, 204 p.
  28. Meshkov, Yu.Ya. (2001). The concept of a critical density of energy in modern introduction to probability and statistics. Progress in Physics of Metals, 2(1), 7-50. https://doi.org/10.15407/ufm.02.01.007
  29. Barkovsky, V.V., Barkovsky, N.V., & Lopatin, O.K. (2002). Teoriia ymovirnostei ta matematychna statystyka. Kyiv, Ukraina: Tsentr uchbovoi literatury, 424 s.
  30. Cramer, H. (2016). Mathematical method of statistics. Journal of Modern Physics, 7(9).
  31. Лицензия Creative Commons