Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Potential utilization of natural zeolite, fly ash and rice husk ash for geopolymer concrete production

Danang Nor Arifin1, Edy Sanwani2

1National Research and Innovation Agency, Bandung, Indonesia

2Institut Teknologi Bandung, Bandung, Indonesia


Min. miner. depos. 2023, 17(3):86-92


https://doi.org/10.33271/mining17.03.086

Full text (PDF)


      ABSTRACT

      Purpose. The experimental research purpose is to study the potential use of natural zeolite, fly ash, and rice husk ash for geopolymer concrete production based on the effect of the Al/Si ratio on microstructure properties and compressive strength.

      Methods. The formulation process is based on the ratio of Al/Si contained in the raw material, the selection of raw material grain size, mixing and molding of the geopolymer concrete. The geopolymer concrete properties are analyzed in terms of compressive strength and microstructure properties.

      Findings. Fly ash, natural zeolite and rice husk ash can be used to produce new functional materials in the form of geopolymer concrete with a compressive strength of up to 16.74 MPa. The mixing formula is based on the ratio of Al/Si contained in the raw materials, and their ratio is 1:2; 1:2.5; 1:3; 1:3.5 and 1:4. Geopolymer concrete specimens showed the required physical and mechanical properties.

      Originality. The originality of this research lies in the utilization of natural zeolite, fly ash, and rice husk ash as raw materials for geopolymer concrete production. This approach offers a practical solution by utilizing these common and readily available materials, rich in silica and alumina, to produce functional and environmentally friendly building materials.

      Practical implications. This research can provide a practical solution to the problem of natural zeolite, fly ash, and rice husk ash rich in silica and alumina, which can be utilized for geopolymer concrete production. Thus, geopolymer concrete can mainly be utilized as a building material for laying walls and floors in pedestrian areas and parks or for other purposes.

      Keywords: concrete, fly ash, geopolymer, rice husk ash (RHA), natural zeolite


      REFERENCES

  1. Posi, P., Teerachanwit, C., Tanutong, C., Limkamoltip, S., Lertnimoolchai, S., Sata, V., & Chindaprasirt, P. (2013). Lightweight geopolymer concrete containing aggregate from recycle lightweight block. Materials & Design, (52), 580-586. https://doi.org/10.1016/j.matdes.2013.06.001
  2. Fouchal, F., Gouny, F., Maillard, P., Ulmet, L., & Rossignol, S. (2015). Experimental evaluation of hydric performances of masonry walls made of earth bricks, geopolymer and wooden frame. Building and Environment, (87), 234-243. https://doi.org/10.1016/j.buildenv.2015.01.036
  3. Hasanbeigi, A., Menke, C., & Price, L. (2010). The CO2 abatement cost curve for the Thailand cement industry. Journal of Cleaner Production, 18(15), 1509-1518. https://doi.org/10.1016/j.jclepro.2010.06.005
  4. Davidovits, J. (1989). Geopolymers and geopolymeric materials. Journal of Thermal Analysis, 35(2), 429-441. https://doi.org/10.1007/bf01904446
  5. Davidovits, J. (2011). Geopolymer chemistry and application. Saint-Quentin, France: Geopolymer Institute, 675 p.
  6. Phair, J.W., & Van Deventer, J.S.J. (2001). Effect of silicate activator pH on the leaching and material characteristics of waste-based inorganic polymers. Minerals Engineering, 14(3), 289-304. https://doi.org/10.1016/s0892-6875(01)00002-4
  7. Van Bekkum, H., Flanigen, E.M., & Jansen, J.C. (1991). Introduction to zeolite science and practice. Amsterdam, Netherland: Elsevier, 1078 p.
  8. Van Jaarsveld, J.G.S., Van Deventer, J.S.J., & Lorenzen, L. (1998). Factors affecting the immobilization of metals in geopolymerized flyash. Metallurgical and Materials Transactions B, 29(1), 283-291. https://doi.org/10.1007/s11663-998-0032-z
  9. Bakharev, T. (2005). Resistance of geopolymer materials to acid attack. Cement and Concrete Research, 35(4), 658-670. https://doi.org/10.1016/j.cemconres.2004.06.005
  10. Khale, D., & Chaudhary, R. (2007). Mechanism of geopolymerization and factors influencing its development: A review. Journal of Materials Science, 42(3), 729-746. https://doi.org/10.1007/s10853-006-0401-4
  11. Kizhakkumodom Venkatanarayanan, H., & Rangaraju, P.R. (2015). Effect of grinding of low-carbon rice husk ash on the microstructure and performance properties of blended cement concrete. Cement and Concrete Composites, (55), 348-363. https://doi.org/10.1016/j.cemconcomp.2014.09.021
  12. Ichiura, H., Kitaoka, T., & Tanaka, H. (2003). Removal of indoor pollutants under UV irradiation by a composite TiO2-zeolite sheet prepared using a papermaking technique. Chemosphere, 50(1), 79-83. https://doi.org/10.1016/s0045-6535(02)00604-5
  13. Huang, Y., Han, M., & Yi, R. (2012). Microstructure and properties of fly ash-based geopolymeric material with 5A zeolite as a filler. Construction and Building Materials, (33), 84-89. https://doi.org/10.1016/j.conbuildmat.2012.01.014
  14. Swanepoel, J.C., & Strydom, C.A. (2002). Utilisation of fly ash in a geopolymeric material. Applied Geochemistry, 17(8), 1143-1148. https://doi.org/10.1016/s0883-2927(02)00005-7
  15. Hwang, C.-L., & Huynh, T.-P. (2015). Effect of alkali-activator and rice husk ash content on strength development of fly ash and residual rice husk ash-based geopolymers. Construction and Building Materials, (101), 1-9. https://doi.org/10.1016/j.conbuildmat.2015.10.025
  16. Görhan, G., & Kürklü, G. (2014). The influence of the NaOH solution on the properties of the fly ash-based geopolymer mortar cured at different temperatures. Composites Part B: Engineering, (58), 371-377. https://doi.org/10.1016/j.compositesb.2013.10.082
  17. Zhuang, X.Y., Chen, L., Komarneni, S., Zhou, C.H., Tong, D.S., Yang, H.M., Yu, W.H., & Wang, H. (2016). Fly ash-based geopolymer: Clean production, properties and applications. Journal of Cleaner Production, (125), 253-267.https://doi.org/10.1016/j.jclepro.2016.03.019
  18. He, J., Zhang, J., Yu, Y., & Zhang, G. (2012). The strength and microstructure of two geopolymers derived from metakaolin and red mud-fly ash admixture: A comparative study. Construction and Building Materials, (30), 80-91. https://doi.org/10.1016/j.conbuildmat.2011.12.011
  19. Kriven, W.M., Bell, J.L., & Gordon, M. (2012). Microstructure and microchemistry of fully-reacted geopolymers and geopolymer matrix composites. Advances in Ceramic Matrix Composites, (IX), 227-250. https://doi.org/10.1002/9781118406892.ch15
  20. Duxson, P., Provis, J.L., Lukey, G.C., Mallicoat, S.W., Kriven, W.M., & van Deventer, J.S.J. (2005). Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 269(1-3), 47-58.https://doi.org/10.1016/j.colsurfa.2005.06.060
  21. ASTM C 618. (2012). Standard specification for coal fly ash and raw or calcined naturalpozzolan for use in concrete. Annual Book of ASTM Standard.
  22. SNI 2493:2011. (2011). Tata cara pembuatan dan perawatan benda uji beton di laboratorium. Jakarta, Indonesia: National Standardization Agency of Indonesia.
  23. SNI 1974-2011. (2011). Cara uji kuat tekan beton dengan benda uji silinder. Jakarta, Indonesia: National Standardization Agency of Indonesia.
  24. Rowles, M., & O’Connor, B. (2003). Chemical optimisation of the compressive strength of aluminosilicate geopolymers synthesised by sodium silicate activation of metakaolinite. Journal of Materials Chemistry, 13(5), 1161-1165. https://doi.org/10.1039/b212629j
  25. Davidovits, J. (1982). The need to create a new technical language for the transfer of basic scientific information. Transfer and Exploitation of Scientific and Technical Information. Luxembrourg, Luxembrourg: Commission of the European Communities, 316 p.
  26. McCormick, A.V., Bell, A.T., & Radke, C.J. (1989). Multinuclear NMR investigation of the formation of aluminosilicate anions. The Journal of Physical Chemistry, 93(5), 1741-1744. https://doi.org/10.1021/j100342a015
  27. Nazari, A., Bagheri, A., & Riahi, S. (2011). Properties of geopolymer with seeded fly ash and rice husk bark ash. Materials Science and Engineering: A, 528(24), 7395-7401.https://doi.org/10.1016/j.msea.2011.06.027
  28. Chindaprasirt, P., Chareerat, T., & Sirivivatnanon, V. (2007). Workability and strength of coarse high calcium fly ash geopolymer. Cement and Concrete Composites, 29(3), 224-229.https://doi.org/10.1016/j.cemconcomp.2006.11.002
  29. Rangan, B.V., Wallah, S.E., Sumajouw, D.M.J., & Hardjito, D. (2006). Heat-cured, low-calcium, fly ash-based geopolymer concrete. Indian Concrete Journal, (80), 47.
  30. Puertas, F., Martı́nez-Ramı́rez, S., Alonso, S., & Vázquez, T. (2000). Alkali-activated fly ash/slag cements. Cement and Concrete Research, 30(10), 1625-1632. https://doi.org/10.1016/s0008-8846(00)00298-23
  31. Yousef, R.I., El-Eswed, B., Alshaaer, M., Khalili, F., & Khoury, H. (2009). The influence of using Jordanian natural zeolite on the adsorption, physical, and mechanical properties of geopolymers products. Journal of Hazardous Materials, 165(1-3), 379-387. https://doi.org/10.1016/j.jhazmat.2008.10.004
  32. He, J., Jie, Y., Zhang, J., Yu, Y., & Zhang, G. (2013). Synthesis and characterization of red mud and rice husk ash-based geopolymer composites. Cement and Concrete Composites, (37), 108-118. https://doi.org/10.1016/j.cemconcomp.2012.11.010
  33. Tugrul, A., Hasdemir, S., & Yılmaz, M. (2014). The effect of feldspar, mica and clay minerals on compressive strength of mortar. Engineering Geology for Society and Territory, (5), 93-96. https://doi.org/10.1007/978-3-319-09048-1_18
  34. Kusbiantoro, A., Nuruddin, M.F., Shafiq, N., & Qazi, S.A. (2012). The effect of microwave incinerated rice husk ash on the compressive and bond strength of fly ash based geopolymer concrete. Construction and Building Materials, (36), 695-703. https://doi.org/10.1016/j.conbuildmat.2012.06.064
  35. Assi, L.N., Deaver, E., El Batanouny, M.K., & Ziehl, P. (2016). Investigation of early compressive strength of fly ash-based geopolymer concrete. Construction and Building Materials, (112), 807-815. https://doi.org/10.1016/j.conbuildmat.2016.03.008
  36. Лицензия Creative Commons