Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Critical review of methods for intensifying the gas generation process in the reaction channel during underground coal gasification (UCG)

Vasyl Lozynskyi1

1Dnipro University of Technology, Dnipro, Ukraine


Min. miner. depos. 2023, 17(3):67-85


https://doi.org/10.33271/mining17.03.067

Full text (PDF)


      ABSTRACT

      Purpose. The research purpose is to perform a critical analysis of methods for intensifying the gas generation process in the reaction channel to improve the efficiency and economic feasibility of coal seam gasification technology. The paper studies in detail the aspects of the chemical mechanism and technological parameters of this process in order to determine the possibilities for improving efficiency and productivity.

      Methods. The review study is based on an approach that includes an analysis of the underground coal gasification development, the study of chemical reactions in the reaction channel, the study of the influence of factors such as temperature, pressure, blast and producer gas composition, etc. The experimental research data systematization is based on in-depth analysis of scientific papers published in peer-reviewed journals.

      Findings. The systematized results of research into nine main methods for intensifying the gas generation process in the reaction channel during underground coal gasification are presented. The factors having the greatest influence on gas generation in the reaction channel have been identified.

      Originality. Research results indicate the possibility of improving the process of underground coal gasification. The revealed relationships between different factors contribute to a deeper understanding of the chemical and physical processes in the reaction channel.

      Practical implications. The results obtained can be used to optimize the underground coal gasification process, increase the productivity and quality of gas generation. The specified results can serve as a basis for further scientific research and innovative developments in obtaining an alternative type of fuel.

      Keywords: underground coal gasification, gas generation, intensification, chemical reactions, efficiency, optimization


      REFERENCES

  1. Boretti, A. (2023). Supply of abundant and low-cost total primary energy to a growing world needs nuclear energy and hydrogen energy storage. International Journal of Hydrogen Energy, 48(5), 1649-1650. https://doi.org/10.1016/j.ijhydene.2022.09.210
  2. Holechek, J.L., Geli, H.M., Sawalhah, M.N., & Valdez, R. (2022). A global assessment: can renewable energy replace fossil fuels by 2050? Sustainability, 14(8), 4792. https://doi.org/10.3390/su14084792
  3. Moldabayeva, G., & Abileva, S. (2021). Study and determination of regularities in variability of oil rheological properties to enhance oil recovery. Periodicals of Engineering and Natural Sciences (PEN), 9(4), 44-60. https://doi.org/10.21533/pen.v9i4.2299
  4. Dyczko, A., Kamiński, P., Stecuła, K., Prostański, D., Kopacz, M., & Kowol, D. (2021). Thermal and mechanical energy storage as a chance for energy transformation in Poland. Polityka Energetyczna, 24(3), 43-60. https://doi.org/10.33223/epj/141867
  5. Bondarenko, V., Salieiev, I., Kovalevska, I., Chervatiuk, V., Malashkevych, D., Shyshov, M., & Chernyak, V. (2023). A new concept for complex mining of mineral raw material resources from DTEK coal mines based on sustainable development and ESG strategy. Mining of Mineral Deposits, 17(1), 1-16. https://doi.org/10.33271/mining17.01.001
  6. Krewitt, W., Teske, S., Simon, S., Pregger, T., Graus, W., Blomen, E., Schmid, S., & Schäfer, O. (2009). Energy [R]evolution 2008 – A sustainable world energy perspective. Energy Policy, 37(12), 5764-5775. https://doi.org/10.1016/j.enpol.2009.08.042
  7. Dyczko, A. (2023). Production management system in a modern coal and coke company based on the demand and quality of the exploited raw material in the aspect of building a service-oriented architecture. Journal of Sustainable Mining, 22(1), 2-19. https://doi.org/10.46873/2300-3960.1371
  8. Koveria, A., Kieush, L., Usenko, A., & Sova, A. (2023). Study of cellulose additive effect on the caking properties of coal. Mining of Mineral Deposits, 17(2), 1-8. https://doi.org/10.33271/mining17.02.001
  9. Dyczko, A. (2023). Real-time forecasting of key coking coal quality parameters using neural networks and artificial intelligence. Rudarsko-Geološko-Naftni Zbornik, 38(3), 105-117. https://doi.org/10.17794/rgn.2023.3.9
  10. Joshi, A., Shah, V., Mohapatra, P., Kumar, S., Joshi, R.K., Kathe, M., & Fan, L.S. (2021). Chemical looping-A perspective on the next-gen technology for efficient fossil fuel utilization. Advances in Applied Energy, (3), 100044. https://doi.org/10.1016/j.adapen.2021.100044
  11. Rehman, A., Ma, H., Chishti, M. Z., Ozturk, I., Irfan, M., & Ahmad, M. (2021). Asymmetric investigation to track the effect of urbanization, energy utilization, fossil fuel energy and CO2 emission on economic efficiency in China: Another outlook. Environmental Science and Pollution Research, (28), 17319-17330. https://doi.org/10.1007/s11356-020-12186-w
  12. Hosseini, S.E. (2022). Transition away from fossil fuels toward renewables: Lessons from Russia-Ukraine crisis. Future Energy, 1(1), 2-5. https://orcid.org/0000-0002-0907-9427
  13. Sathre, R. (2014). Comparing the heat of combustion of fossil fuels to the heat accumulated by their lifecycle greenhouse gases. Fuel, (115), 674-677. https://doi.org/10.1016/j.fuel.2013.07.069
  14. Lapčík, V., Lapčík, M., & Lapčík Jr, V. (2022). Current aspects of decarbonisation in the Czech Republic and possibilities of replacement of coal energy sources by renewable sources of electric energy. Inżynieria Mineralna, 1(1), 87-96. https://doi.org/10.29227/IM-2022-01-11
  15. Karmaker, A.K., Rahman, M.M., Hossain, M.A., & Ahmed, M.R. (2020). Exploration and corrective measures of greenhouse gas emission from fossil fuel power stations for Bangladesh. Journal of Cleaner Production, (244), 118645. https://doi.org/10.1016/j.jclepro.2019.118645
  16. Koval, V., Kryshtal, H., Udovychenko, V., Soloviova, O., Froter, O., Kokorina, V., & Veretin, L. (2023). Review of mineral resource management in a circular economy infrastructure. Mining of Mineral Deposits, 17(2), 61-70. https://doi.org/10.33271/mining17.02.061
  17. Cantarero, M.M.V. (2020). Of renewable energy, energy democracy, and sustainable development: A roadmap to accelerate the energy transition in developing countries. Energy Research & Social Science, (70), 101716. https://doi.org/10.1016/j.erss.2020.101716
  18. Piwniak, G.G., Bondarenko, V.I., Salli, V.I., Pavlenko, I.I., & Dychkovskiy, R.O. (2007). Limits to economic viability of extraction of thin coal seams in Ukraine. Technical, Technological and Economic Aspects of Thin-Seams Coal Mining, 129-132. https://doi.org/10.1201/noe0415436700.ch16
  19. Carley, S., & Konisky, D.M. (2020). The justice and equity implications of the clean energy transition. Nature Energy, 5(8), 569-577. https://doi.org/10.1038/s41560-020-0641-6
  20. Falshtynskyi, V.S. (2009). Improvement of technology of borehole underground coal gasification. Dnipropetrovsk, Ukraina: NMU, 180 p.
  21. Konovšek, D., Nadvežnik, J., & Medved, M. (2017, July). An overview of world history of underground coal gasification. AIP Conference Proceedings, 1866(1), 050004. https://doi.org/10.1063/1.4994528
  22. Klimenko, A.Y. (2018). Early developments and inventions in underground coal gasification. Underground Coal Gasification and Combustion, 11-24. https://doi.org/10.1016/B978-0-08-100313-8.00002-5
  23. Olateju, B., & Kumar, A. (2013). Techno-economic assessment of hydrogen production from underground coal gasification (UCG) in Western Canada with carbon capture and sequestration (CCS) for upgrading bitumen from oil sands. Applied Energy, (111), 428-440. https://doi.org/10.1016/j.apenergy.2013.05.014
  24. Xie, J., Xin, L., Hu, X., Cheng, W., Liu, W., & Wang, Z. (2020). Technical application of safety and cleaner production technology by underground coal gasification in China. Journal of Cleaner Production, (250), 119487. https://doi.org/10.1016/j.jclepro.2019.119487
  25. Li, Y., Liang, X., & Liang, J. (2007). An overview of the Chinese UCG program. Data Science Journal, (6), S460-S466. https://doi.org/10.2481/dsj.6.S460
  26. Bhutto, A.W., Bazmi, A.A., & Zahedi, G. (2013). Underground coal gasification: From fundamentals to applications. Progress in Energy and Combustion Science, 39(1), 189-214. https://doi.org/10.1016/j.pecs.2012.09.004
  27. Derbin, Y., Walker, J., Wanatowski, D., & Marshall, A. (2015). Soviet experience of underground coal gasification focusing on surface subsidence. Journal of Zhejiang University: Science A, 16(10), 839-850. https://doi.org/10.1631/jzus.A1500013
  28. Gregg, D.W., Hill, R.W., & Olness, D.U. (1976). An overview of the Soviet effort in underground coal gasification. Report UCRL-52004. Livermore, United States: Lawrence Livermore Laboratory.
  29. Khadse, A., Qayyumi, M., Mahajani, S., & Aghalayam, P. (2007). Underground coal gasification: A new clean coal utilization technique for India. Energy, 32(11), 2061-2071. https://doi.org/10.1016/j.energy.2007.04.012
  30. Khan, M.M., Mmbaga, J.P., Shirazi, A.S., Trivedi, J., Liu, Q., & Gupta, R. (2015). Modelling underground coal gasification – A review. Energies, 8(11), 12603-12668. https://doi.org/10.3390/en81112331
  31. Klimenko, A.Y. (2009). Early ideas in underground coal gasification and their evolution. Energies, 2(2), 456-476. https://doi.org/10.3390/en20200456
  32. Ming, Z., Daoyi, X., & Wenpeng, S. (2012). Rapid progress of underground coal gasification in the world. Chinese Journal of Nature, 34(3), 161-166.
  33. Ming, Z., Daoyi, X., Wenpeng, S., Zuotang, W., Meng, H., & Xuedong, Y. (2013). History and present status of underground coal gasification technology in overseas countries. Coal Science and Technology, 41(5), 4-9.
  34. Mocek, P., Pieszczek, M., Świądrowski, J., Kapusta, K., Wiatowski, M., & Stańczyk, K. (2016). Pilot-scale underground coal gasification (UCG) experiment in an operating Mine “Wieczorek” in Poland. Energy, (111), 313-321. https://doi.org/10.1016/j.energy.2016.05.087
  35. Perkins, G. (2018). Underground coal gasification – Part I: Field demonstrations and process performance. Progress in Energy and Combustion Science, (67), 158-187. https://doi.org/10.1016/j.pecs.2018.02.004
  36. Chen, S.-Y., Li, L.-Z., Cui, J.-Y., Zhang, Y., & Wu, X.-D. (2014). Advances of underground coal gasification (UCG) and industrial development. Resources & Industries, 16(5), 129.
  37. Zou, C., Chen, Y., Kong, L., Sun, F., Chen, S., & Dong, Z. (2019). Underground coal gasification and its strategic significance to the development of natural gas industry in China. Petroleum Exploration and Development, 46(2), 205-215. https://doi.org/10.1016/S1876-3804(19)60002-9
  38. Bondarenko, V., Tabachenko, M., & Wachowicz, J. (2010). Possibility of production complex of sufficient gasses in Ukraine. New Techniques and Technologies in Mining, 113-119. https://doi.org/10.1201/b11329-19
  39. Falshtynskyi, V., Saik, P., Lozynskyi, V., Dychkovskyi, R., & Petlovanyi, M. (2018). Innovative aspects of underground coal gasification technology in mine conditions. Mining of Mineral Deposits, 12(2), 68-75. https://doi.org/10.15407/mining12.02.068
  40. Buktukov, N.S., Gumennikov, E.S., Mashataeva, G.A. (2019). In-situ gasification of steeply dipping coal beds with production hole making by supersonic hydraulic jets. Mining Informational and Analytical Bulletin, (9), 30-40. https://doi.org/10.25018/0236-1493-2019-09-0-30-40
  41. Saik, P., Petlovanyi, M., Lozynskyi, V., Sai, K., & Merzlikin, A. (2018). Innovative approach to the integrated use of energy resources of underground coal gasification. Solid State Phenomena, (277), 221-231. https://doi.org/10.4028/www.scientific.net/SSP.277.221
  42. Schrider, L.A., & Jennings, J.W. (1974). An underground coal gasification experiment, Hanna, Wyoming. SPE Annual Technical Conference and Exhibition, SPE-4993. https://doi.org/10.1080/00908317508945955
  43. Luo, J.A., & Wang, L. (2011). High-temperature mechanical properties of mudstone in the process of underground coal gasification. Rock Mechanics and Rock Engineering, (44), 749-754. https://doi.org/10.1007/s00603-011-0168-z
  44. Fischer, D.D., Brandenburg, C.F., & Schrider, L.A. (1975). Energy recovery from in situ coal gasification. Energy Sources, 2(3), 281-292.
  45. Davis, B.E., & Jennings, J.W. (1984). State-of-the-art summary for underground coal gasification. Journal of Petroleum Technology, 36(01), 15-21. https://doi.org/10.2118/12815-PA
  46. Huang, W.G., Zhang, S.W., Lu, X., Wu, S.L., & Huang, J. (2022). Residual coal distribution in China and adaptability evaluation of its resource conditions to underground coal gasification. Sustainable Energy Technologies and Assessments, (49), 101654. https://doi.org/10.1016/j.seta.2021.101654
  47. Sajjad, M., & Rasul, M. G. (2014). Review on the existing and developing underground coal gasification techniques in abandoned coal seam gas blocks: Australia and global context. International e-Conference on Energies, 14-31.
  48. Blinderman, M.S., & Anderson, B. (2004). Underground coal gasification for power generation: high efficiency and CO2-emissions. ASME Power Conference, (41626), 473-479. https://doi.org/10.1115/POWER2004-52036
  49. Richardson, R.J., & Singh, S. (2012). Prospects for underground coal gasification in Alberta, Canada. Institution of Civil Engineers-Energy, 165(3), 125-136. https://doi.org/10.1680/ener.11.00035
  50. Yang, L., Liang, J., & Yu, L. (2003). Clean coal technology-Study on the pilot project experiment of underground coal gasification. Energy, 28(14), 1445-1460. https://doi.org/10.1016/S0360-5442(03)00125-7
  51. Jiang, L., Xue, D., Wei, Z., Chen, Z., Mirzayev, M., Chen, Y., & Chen, S. (2022). Coal decarbonization: A state-of-the-art review of enhanced hydrogen production in underground coal gasification. Energy Reviews, 1(1), 100004. https://doi.org/10.1016/j.enrev.2022.100004
  52. Khadse, A.N. (2015). Resources and economic analyses of underground coal gasification in India. Fuel, (142), 121-128. https://doi.org/10.1016/j.fuel.2014.10.057
  53. Sajjad, M., & Rasul, M.G. (2015). Prospect of underground coal gasification in Bangladesh. Procedia Engineering, (105), 537-548. https://doi.org/10.1016/j.proeng.2015.05.087
  54. Nieć, M., Sermet, E., Chećko, J., & Górecki, J. (2017). Evaluation of coal resources for underground gasification in Poland. Selection of possible UCG sites. Fuel, (208), 193-202. https://doi.org/10.1016/j.fuel.2017.06.087
  55. Chen, Y., Chen, H., Zhen, D., Xue, J., & Zhang, M. (2022). Development foundation and technical countermeasure of middle-deep underground coal gasification in China. International Symposium on Project Management, 745-757. https://doi.org/10.52202/065147-0102
  56. Xiao, Y., Yin, J., Hu, Y., Wang, J., Yin, H., & Qi, H. (2019). Monitoring and control in underground coal gasification: Current research status and future perspective. Sustainability, 11(1), 217. https://doi.org/10.3390/su11010217
  57. Akanksha, Singh, A.K., Mohantya, D., & Jena, H.M. (2017). Deployment of underground coal gasification in India. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 39(16), 1762-1770. https://doi.org/10.18520/cs/v113/i02/218-227
  58. Dychkovskyi, R.O., Avdiushchenko, A.S., Falshtynskyi, V.S., & Saik, P.B. (2013). On the issue of estimation of the coal mine extraction area economic efficiency. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 107-114.
  59. Liu, H., & Liu, S. (2021). Life cycle energy consumption and GHG emissions of hydrogen production from underground coal gasification in comparison with surface coal gasification. International Journal of Hydrogen Energy, 46(14), 9630-9643. https://doi.org/10.1016/j.ijhydene.2020.12.096
  60. Verma, A., & Kumar, A. (2015). Life cycle assessment of hydrogen production from underground coal gasification. Applied Energy, (147), 556-568. https://doi.org/10.1016/j.apenergy.2015.03.009
  61. Yang, L., Zhang, X., Liu, S., Yu, L., & Zhang, W. (2008). Field test of large-scale hydrogen manufacturing from underground coal gasification (UCG). International Journal of Hydrogen Energy, 33(4), 1275-1285. https://doi.org/10.1016/j.ijhydene.2007.12.055
  62. Kapusta, K., Wiatowski, M., Stańczyk, K., Zagorščak, R., & Thomas, H.R. (2020). Large-scale experimental investigations to evaluate the feasibility of producing methane-rich gas (SNG) through underground coal gasification process. Effect of coal rank and gasification pressure. Energies, 13(6), 1334. https://doi.org/10.3390/en13061334
  63. Dychkovskyi, R., Shavarskyi, J., Cabana, E.C., & Smoliński, A. (2019). Characteristic of possible obtained products during the well underground coal gasification. Solid State Phenomena, (291), 52-62. https://doi.org/10.4028/www.scientific.net/ssp.291.52
  64. Czop, M., Kajda-Szcześniak, M., Zajusz-Zubek, E., Biss, W., Bochenko, A., Brzezina, Ł., & Turyła, K. (2022). The role of slag from the combustion of slid municipal waste in circular economy. Inżynieria Mineralna, 1(2), 145-150. https://doi.org/10.29227/IM-2022-02-19
  65. Falshtynskyi, V.S., Dychkovskyi, R.O., Saik, P.B., Lozynskyi, V.H., & Cabana, E.C. (2017). Formation of thermal fields by the energy-chemical complex of coal gasification. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 36-42.
  66. Pіvnyаk, G., Dychkоvskyі, R., Bоbylіоv, О., Cаbаnа, Е. C., & Smоlіńskі, А. (2018). Mаthеmаtіcаl аnd gеоmеchаnіcаl mоdеl іn physіcаl аnd chеmіcаl prоcеssеs оf undеrgrоund cоаl gаsіfіcаtіоn. Sоlіd Stаtе Phеnоmеnа, (277), 1-16. https://doi.org/10.4028/www.scientific.net/ssp.277.1
  67. Saik, P.B. (2014). On the issue of simultaneous gasification of contiguous low-coal seams. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 33-37.
  68. Saik, P.B., Dychkovskyi, R.O., Lozynskyi, V.H., Malanchuk, Z.R., & Malanchuk, Ye.Z. (2016). Revisiting the underground gasification of coal reserves from contiguous seams. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 60-66.
  69. Kolokolov, O.V. (2000). Teoriya i praktika termohimicheskoy tehnologii dobyichi i pererabotki uglya. Dnepropetrovsk, Ukraina: NGA, 255 p.
  70. Perkins, G. (2018). Underground coal gasification – Part II: Fundamental phenomena and modeling. Progress in Energy and Combustion Science, (67), 234-274. https://doi.org/10.1016/j.pecs.2018.03.002
  71. Hobbs, M.L., Radulovic, P.T., & Smoot, D.L. (1993). Combustion and gasification of coals in fixed-beds. Progress in Energy and Combustion Science, 19(6), 505-586. https://doi.org/10.1016/0360-1285(93)90003-W
  72. Higman, C., & van der Burgt, M. (2008). Gasification processes. Gasification, 91-191. https://doi.org/10.1016/b978-0-7506-8528-3.00005-5
  73. Yuewu, L., Huijun, F., Longlong, L., Tengze, G., Taiyi, Z., Danlu, L., & Jiuge, D. (2022). Recent progress on numerical research of key mechanical problems during underground coal gasification. Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 54(12), 1-17. https://doi.org/10.6052/0459-1879-22-331
  74. Takyi, S.A., Zhang, Y., Si, M., Zeng, F., Li, Y., & Tontiwachwuthikul, P. (2023). Current status and technology development in implementing low carbon emission energy on underground coal gasification (UCG). Frontiers in Energy Research, (10), 1051417. https://doi.org/10.3389/fenrg.2022.1051417
  75. Zhang, Y., Gu, B., Zhou, C., & Wan, Z. (2022). Numerical simulation on gas production characteristics during underground coal gasification. Journal of Mining and Safety Engineering, 39(6), 1169-1176. https://doi.org/10.13545/j.cnki.jmse.2022.0091
  76. Mandal, R., & Maity, T. (2023). Operational process parameters of underground coal gasification technique and its control. Journal of Process Control, (129), 103031. https://doi.org/10.1016/j.jprocont.2023.103031
  77. Scheffknecht, G., Al-Makhadmeh, L., Schnell, U., & Maier, J. (2011). Oxy-fuel coal combustion – A review of the current state-of-the-art. International Journal of Greenhouse Gas Control, (5), S16-S35. https://doi.org/10.1016/j.ijggc.2011.05.020
  78. Huffman, G.P., Huggins, F.E., Shah, N., & Shah, A. (1990). Behavior of basic elements during coal combustion. Progress in Energy and Combustion Science, 16(4), 243-251. https://doi.org/10.1016/0360-1285(90)90033-Y
  79. Liang, Y., Yang, Y., Guo, S., Tian, F., & Wang, S. (2023). Combustion mechanism and control approaches of underground coal fires: A review. International Journal of Coal Science & Technology, 10(1), 24. https://doi.org/10.1007/s40789-023-00581-w
  80. Song, G.C., Xu, W.T., Yang, X.Y., & Song, Q. (2022). Coupling effects of mineral components on arsenic transformation during coal combustion. Journal of Hazardous Materials, (435), 129040. https://doi.org/10.1016/j.jhazmat.2022.129040
  81. Petlovanyi, M., Lozynskyi, V., Saik, P., & Sai, K. (2019). Predicting the producing well stability in the place of its curving at the underground coal seams gasification. E3S Web of Conferences, (123), 01019. https://doi.org/10.1051/e3sconf/201912301019
  82. Mandapati, R.N., & Ghodke, P. (2020). Modeling of gasification process of Indian coal in perspective of underground coal gasification (UCG). Environment, Development and Sustainability, 22(7), 6171-6186. https://doi.org/10.1007/s10668-019-00469-3
  83. Lozynskyi, V.H., Dychkovskyi, R.O., Falshtynskyi, V.S., & Saik, P.B. (2015). Revisiting possibility to cross disjunctive geological faults by underground gasifier. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 22-28.
  84. Lozynskyi, V.G., Dychkovskyi, R.O., Falshtynskyi, V.S., Saik, P.B., & Malanchuk, Ye.Z. (2016). Experimental study of the influence of crossing the disjunctive geological faults on thermal regime of underground gasifier. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 21-29.
  85. Yerizam, M., Zulatama, A., & Syarif, A. (2021). Effect of oxygen flow rate on combustion time and temperature of underground coal gasification. International Journal of Research in Vocational Studies, 1(2), 27-33.
  86. Liu, X., Guo, G., & Li, H. (2019). Study on the propagation law of temperature field in surrounding rock of underground coal gasification (UCG) combustion cavity based on dynamic thermal parameters. Results in Physics, (12), 1956-1963. https://doi.org/10.1016/j.rinp.2019.02.006
  87. Liu, X., Guo, G., & Li, H. (2020). Thermo-mechanical coupling numerical simulation method under high temperature heterogeneous rock and application in underground coal gasification. Energy Exploration & Exploitation, 38(4), 1118-1139. https://doi.org/10.1177/01445987198889
  88. Wang, Z., Wei, Y., Hou, T., Jin, Y., Wang, C., & Liang, J. (2020). Large-scale laboratory study on the evolution law of temperature fields in the context of underground coal gasification. Chinese Journal of Chemical Engineering, 28(12), 3126-3135. https://doi.org/10.1016/j.cjche.2020.07.005
  89. Gür, M., & Canbaz, E.D. (2020). Analysis of syngas production and reaction zones in hydrogen oriented underground coal gasification. Fuel, (269), 117331. https://doi.org/10.1016/j.fuel.2020.117331
  90. Shafirovich, E., Mastalerz, M., Rupp, J., & Varma, A. (2008). The potential for underground coal gasification in Indiana. Phase I Report to the Indiana Center for Coal Technology Research. West Lafayette, Indiana, 25 p.
  91. Żogała, A. (2014). Equilibrium simulations of coal gasification – factors affecting syngas composition. Journal of Sustainable Mining, 13(2), 30-38. https://doi.org/10.7424/jsm140205
  92. Chen, Z., Zhu, F., Zhang, Y., Lv, W., & Zhang, Z. (2021). Development of gasification agent injection tool for underground coal gasification. E3S Web of Conferences, (267), 02056. https://doi.org/10.1051/e3sconf/202126702056
  93. Yang, L.H., & Ding, Y.M. (2009). Numerical study on convection diffusion for gasification agent in underground coal gasification (UCG). Part II: Determination of model parameters and results analysis. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 31(4), 318-324. https://doi.org/10.1080/15567030701527723
  94. Liu, S. Q., Liu, J. H., & Yu, L. (2002). Environmental benefits of underground coal gasification. Journal of Environmental Sciences, 14(2), 284-288.
  95. Wang, Z.T., Huang, W.G., Zhang, P., & Xin, L. (2011). A contrast study on different gasifying agents of underground coal gasification at Huating Coal Mine. Journal of Coal Science and Engineering (China), (17), 181-186. https://doi.org/10.1007/s12404-011-0214-1
  96. Nakaten, N., Kempka, T., Burchart-Korol, D., Krawczyk, P., Kapusta, K., & Stańczyk, K. (2016). Techno-economic analysis for the evaluation of three UCG synthesis gas end use approaches. EGU General Assembly Conference Abstracts, EPSC2016-13898.
  97. Jowkar, A., Sereshki, F., & Najafi, M. (2020). Numerical simulation of UCG process with the aim of increasing calorific value of syngas. International Journal of Coal Science & Technology, (7), 196-207.https://doi.org/10.1007/s40789-019-00288-x
  98. Sarhosis, V., Kapusta, K., & Lavis, S. (2018). Underground coal gasification (UCG) in Europe: Field trials, laboratory experiments, and EU-funded projects. Underground Coal Gasification and Combustion, 129-171. https://doi.org/10.1016/B978-0-08-100313-8.00005-0
  99. Durucan, S., Korre, A., Shi, J.Q., Idiens, M., Stańczyk, K., Kapusta, K., & Mastalerz, M. (2014). TOPS: Technology options for coupled underground coal gasification and CO2 capture and storage. Energy Procedia, (63), 5827-5835. https://doi.org/10.1016/j.egypro.2014.11.616
  100. Kapusta, K., Wiatowski, M., & Stańczyk, K. (2016). An experimental ex-situ study of the suitability of a high moisture ortho-lignite for underground coal gasification (UCG) process. Fuel, (179), 150-155. https://doi.org/10.1016/j.fuel.2016.03.093
  101. Hongtao, L., Feng, C., Xia, P., Kai, Y., & Shuqin, L. (2011). Method of oxygen-enriched two-stage underground coal gasification. Mining Science and Technology (China), 21(2), 191-196. https://doi.org/10.1016/j.mstc.2011.02.018
  102. Stańczyk, K., Howaniec, N., Smoliński, A., Świądrowski, J., Kapusta, K., Wiatowski, M., & Rogut, J. (2011). Gasification of lignite and hard coal with air and oxygen enriched air in a pilot scale ex situ reactor for underground gasification. Fuel, 90(5), 1953-1962. https://doi.org/10.1016/j.fuel.2010.12.007
  103. Su, F.Q., Zhang, T., Wu, J.B., Deng, Q.C., Hamanaka, A., Yu, Y.H., & Yang, J.N. (2022). Energy recovery evaluation and temperature field research of underground coal gasification under different oxygen concentrations. Fuel, (329), 125389. https://doi.org/10.1016/j.fuel.2022.125389
  104. Li, J., Chen, Z., Zhang, X., Qiao, Y., Yuan, Z., & Li, Z. (2023). Thermal conversion, kinetics, thermodynamics and empirical optimization of combustion performance of coal gasification fine ash in oxygen-enriched atmosphere. Fuel, (331), 125882. https://doi.org/10.1016/j.fuel.2022.125882
  105. Wang, G.X., Wang, Z.T., Feng, B., Rudolph, V., & Jiao, J.L. (2009). Semi-industrial tests on enhanced underground coal gasification at Zhong-Liang-Shan coal mine. Asia-Pacific Journal of Chemical Engineering, 4(5), 771-779. https://doi.org/10.1002/apj.337
  106. Pankiewicz-Sperka, M., Kapusta, K., Basa, W., & Stolecka, K. (2021). Characteristics of water contaminants from underground coal gasification (UCG) process-effect of coal properties and gasification pressure. Energies, 14(20), 6533. https://doi.org/10.3390/en14206533
  107. Zagorščak, R., Sadasivam, S., Thomas, H. R., Stańczyk, K., & Kapusta, K. (2020). Experimental study of underground coal gasification (UCG) of a high-rank coal using atmospheric and high-pressure conditions in an ex-situ reactor. Fuel, (270), 117490. https://doi.org/10.1016/j.fuel.2020.117490
  108. Liu, S., Wang, Y., Yu, L., & Oakey, J. (2006). Thermodynamic equilibrium study of trace element transformation during underground coal gasification. Fuel Processing Technology, 87(3), 209-215. https://doi.org/10.1016/j.fuproc.2005.07.006
  109. Hu, Z., Peng, Y., Sun, F., Chen, S., & Zhou, Y. (2021). Thermodynamic equilibrium simulation on the synthesis gas composition in the context of underground coal gasification. Fuel, (293), 120462. https://doi.org/10.1016/j.fuel.2021.120462
  110. Konstantinou, E., & Marsh, R. (2015). Experimental study on the impact of reactant gas pressure in the conversion of coal char to combustible gas products in the context of underground coal gasification. Fuel, (159), 508-518. https://doi.org/10.1016/j.fuel.2015.06.097
  111. Sha, X., Chen, Y., Cao, J., Yang, Y., & Ren, D. (1990). Effects of operating pressure on coal gasification. Fuel, 69(5), 656-659. https://doi.org/10.1016/0016-2361(90)90157-l
  112. Sadovenko, I.O., Inkin, O.V., Dereviahina, N.I., & Hriplivec, Y.V. (2018). Analyzing the parameters influencing the efficiency of undereground coal gasification. Journal of Geology, Geography and Geoecology, 27(2), 332-336. https://doi.org/10.15421/111857
  113. Pipatmanomai, S., Paterson, N., Dugwell, D.R., & Kandiyoti, R. (2003). Investigation of coal conversion under conditions simulating the raceway of a blast furnace using a pulsed air injection, wire-mesh reactor. Energy & Fuels, 17(2), 489-497. https://doi.org/10.1021/ef020175p
  114. Yin, H., Dai, H., & Liang, G. (2022). Inerting mechanism of magnesium carbonate hydroxide pentahydrate for coal dust deflagration under coal gasification. Powder Technology, (400), 117274. https://doi.org/10.1016/j.powtec.2022.117274
  115. Huang, W.G., Wang, Z.T., Duan, T.H., & Xin, L. (2021). Effect of oxygen and steam on gasification and power generation in industrial tests of underground coal gasification. Fuel, (289), 119855. https://doi.org/10.1016/j.fuel.2020.119855
  116. Prabu, V., & Jayanti, S. (2012). Laboratory scale studies on simulated underground coal gasification of high ash coals for carbon-neutral power generation. Energy, 46(1), 351-358. https://doi.org/10.1016/j.energy.2012.08.016
  117. Ma, W., Liu, S., Li, Z., Lv, J., & Yang, L. (2020). Release and transformation mechanisms of hazardous trace elements in the ash and slag during underground coal gasification. Fuel, (281), 118774. https://doi.org/10.1016/j.fuel.2020.118774
  118. Kumari, G., & Vairakannu, P. (2018). CO2-air based two stage gasification of low ash and high ash Indian coals in the context of underground coal gasification. Energy, (143), 822-832. https://doi.org/10.1016/j.energy.2017.11.027
  119. Yang, L. (2008). Coal properties and system operating parameters for underground coal gasification. Energy Sources, Part A, 30(6), 516-528. https://doi.org/10.1080/15567030600817142
  120. Bartel, L.C., Beckham, L.W., & Reed, R.P. (1976). Instrumentation results from an in-situ coal gasification experiment. SPE Annual Technical Conference and Exhibition, SPE-6151. https://doi.org/10.2118/6151-MS
  121. Yang, L.H. (2008). Model test on underground coal gasification (UCG) with low-pressure fire seepage push-through. Part I: Test conditions and air fire seepage. Energy Sources, Part A, 30(17), 1587-1594. https://doi.org/10.1080/15567030802112102
  122. Bokun, I.A. (2007). Pulsiruyushchee dute v teplotekhnologiyakh podzemnoy gazifikatsii burykh ugley. Energetika, (1). 61-64.
  123. Jowkar, A., Sereshki, F., & Najafi, M. (2018). A new model for evaluation of cavity shape and volume during Underground Coal Gasification process. Energy, (148), 756-765. https://doi.org/10.1016/j.energy.2018.01.188
  124. Camp, D.W. (2018). Underground coal gasification research and development in the United States. Underground Coal Gasification and Combustion, 59-127. https://doi.org/10.1016/B978-0-08-100313-8.00004-9
  125. Jiang, L., Chen, Z., & Ali, S.F. (2017). Modelling of reverse combustion linking in underground coal gasification. Fuel, (207), 302-311. https://doi.org/10.1016/j.fuel.2017.06.097
  126. Debelle, B., Malmendier, M., Mostade, M., & Pirard, J.P. (1992). Modelling of flow at Thulin underground coal gasification experiments. Fuel, 71(1), 95-104. https://doi.org/10.1016/0016-2361(92)90198-W
  127. Kačur, J., Laciak, M., Durdán, M., & Flegner, P. (2023). Investigation of underground coal gasification in laboratory conditions: a review of recent research. Energies, 16(17), 6250. https://doi.org/10.3390/en16176250
  128. Cui, Y., Liang, J., Wang, Z., Zhang, X., Fan, C., Liang, D., & Wang, X. (2014). Forward and reverse combustion gasification of coal with production of high-quality syngas in a simulated pilot system for in situ gasification. Applied Energy, (131), 9-19. https://doi.org/10.1016/j.apenergy.2014.06.001
  129. Perkins, G., du Toit, E., Cochrane, G., & Bollaert, G. (2016). Overview of underground coal gasification operations at Chinchilla, Australia. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38(24), 3639-3646. https://doi.org/10.1080/15567036.2016.1188184
  130. Laciak, M., Kostúr, K., Durdán, M., Kačur, J., & Flegner, P. (2016). The analysis of the underground coal gasification in experimental equipment. Energy, (114), 332-343. https://doi.org/10.1016/j.energy.2016.08.004
  131. Xin, L., Wang, Z.T., Wang, G., Nie, W., Zhou, G., Cheng, W.M., & Xie, J. (2017). Technological aspects for underground coal gasification in steeply inclined thin coal seams at Zhongliangshan coal mine in China. Fuel, (191), 486-494. https://doi.org/10.1016/j.fuel.2016.11.102
  132. Saik, P.B., Falshtynskyi, V.S., Lozynskyi, V.H., Cabana, E.C., Demydov, M.S., & Dychkovskyi, R.O. (2020). Efficiency of underground gas generator in consideration of the reverse mode. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 39-46. https://doi.org/10.33271/nvngu/2020-4/039
  133. Saik, P., & Berdnyk, M. (2022). Mathematical model and methods for solving heat-transfer problem during underground coal gasification. Mining of Mineral Deposits, 16(2), 87-94. https://doi.org/10.33271/mining16.02.087
  134. Xin, J., Liu, L., Jiang, Q., Yang, P., Qu, H., & Xie, G. (2022). Early-age hydration characteristics of modified coal gasification slag-cement-aeolian sand paste backfill. Construction and Building Materials, (322), 125936. https://doi.org/10.1016/j.conbuildmat.2021.125936
  135. Dubiński, J., & Turek, M. (2016). Mining problems of underground coal gasification-reflections based on experience gained in experiment conducted in KHW SA Wieczorek Coal Mine. Mining Science, (23), 7-20. https://doi.org/10.5277/msc162301
  136. Kuzmenko, O., Dychkovskyi, R., Petlovanyi, M., Buketov, V., Howaniec, N., & Smolinski, A. (2023). Mechanism of interaction of backfill mixtures with natural rock fractures within the zone of their intense manifestation while developing steep ore deposits. Sustainability, 15(6), 4889. https://doi.org/10.3390/su15064889
  137. Pomykała, R. (2013). Properties of waste from coal gasification in entrained flow reactors in the aspect of their use in mining technology. Archives of Mining Sciences, 58(2), 375-393. https://doi.org/10.2478/amsc-2013-0026
  138. Zhao, X., Yang, K., He, X., Wei, Z., & Zhang, J. (2022). Study on proportioning experiment and performance of solid waste for underground backfilling. Materials Today Communications, (32), 103863. https://doi.org/10.1016/j.mtcomm.2022.103863
  139. Najafi, M., Jalali, S. M.E., & KhaloKakaie, R. (2014). Thermal-mechanical-numerical analysis of stress distribution in the vicinity of underground coal gasification (UCG) panels. International Journal of Coal Geology, (134), 1-16. https://doi.org/10.1016/j.coal.2014.09.014
  140. Zhao, Y., Dong, Z., Chen, Y., Chen, H., Xue, J., Chen, S., & Peng, Y. (2023). Stress-Dependent Characteristics of Coal Permeability in Gasification Zone of Underground Coal Gasification. US Rock Mechanics/Geomechanics Symposium, RMA-2023-0389. https://doi.org/10.56952/ARMA-2023-0389
  141. Laciak, M., Kačur, J., & Durdán, M. (2022). Modeling and control of energy conversion during underground coal gasification process. Energies, 15(7), 2494. https://doi.org/10.3390/en15072494
  142. Li, Z., Wang, L., Ren, B., & Ding, K. (2022). The layout of the combustion cavity and the fracture evolution of the overlying rock during the process of underground coal gasification. Geofluids, 264959. https://doi.org/10.1155/2022/9264959
  143. Luo, J.A., & He, J. (2022). Mechanical characteristics of sandstone under high temperature and cyclic loading in underground coal gasification. Minerals, 12(10), 1313. https://doi.org/10.3390/min12101313
  144. Sirdesai, N.N., Singh, R., Singh, T.N., & Ranjith, P.G. (2015). Numerical and experimental study of strata behavior and land subsidence in an underground coal gasification project. Proceedings of the International Association of Hydrological Sciences, 372(372), 455-462. https://doi.org/10.5194/piahs-372-455-2015
  145. Shahbazi, M.R., Najafi, M., Fatehi Marji, M., & Abdollahipour, A. (2022). Cavity growth in underground coal gasification method by considering cleat length and inclination of coal with elasto-brittle behavior. Journal of Mining and Environment, 13(2), 607-625. https://doi.org/10.22044/jme.2022.11906.2183
  146. Li, H., Zha, J., Guo, G., Zhang, H., Xu, Y., & Niu, Y. (2022). Evaluation method of surface subsidence degree for underground coal gasification without shaft. Combustion Science and Technology, 194(3), 608-621. https://doi.org/10.1080/00102202.2020.1776706
  147. Dong, Z., Yi, H., Zhao, Y., Wang, X., Chu, T., Xue, J., & Chen, H. (2022). Investigation of the evolution of stratum fracture during the cavity expansion of underground coal gasification. Energies, 15(19), 7373. https://doi.org/10.3390/en15197373
  148. Falshtynskyi, V.S. (2009). Udoskonalennia tekhnolohii sverdlovynnoi pidzemnoi hazyfikatsii vuhillia. Dnipropetrovsk, Ukraina: NHU, 131 p.
  149. Gayko, G., & Zayev, V. (2011). Development of methods for utilization of thermal energy in the underground gasification of coal mining. Technical and Geoinformational Systems in Mining, 43-46. https://doi.org/10.1201/b11586-9
  150. Gayko, G., & Kasyanov, V. (2007). Utilizing thermal power potential of coal by underground burning (gasification) of thin coal layers. Technical, Technological and Economic Aspects of Thin-Seams Coal Mining, 97-101. https://doi.org/10.1201/noe0415436700.ch12
  151. Dychkovskyi, R.O. (2015). Forming the bilayer artificially created shell of georeactor in underground coal well gasification. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 37-42.
  152. Dychkovskyi, R.O. (2015). Determination of the rock subsidence spacing in the well underground coal gasification. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 30-36.
  153. Bondarenko, V.I., Buzylo, V.I., Falshtynskiy, V.S., & Dychkovskiy, R.O. (2007). Parameters of injection fill above an underground gas generator. Technical, Technological and Economic Aspects of Thin-Seams Coal Mining, 89-95. https://doi.org/10.1201/noe0415436700.ch11
  154. Bondarenko, V.I., Falshtynskiy, V.S., & Dychkovskiy, R.O. (2009). Synthetic stowing of rockmass at borehole underground coal gasification (BUCG). Deep Mining Challenges: International Mining Forum, 169-177. https://doi.org/10.1201/noe0415804288.ch18
  155. Jüntgen, H. (1983). Application of catalysts to coal gasification processes. Incentives and perspectives. Fuel, 62(2), 234-238. https://doi.org/10.1016/0016-2361(83)90206-5
  156. Mandapati, R.N., Daggupati, S., Mahajani, S.M., Aghalayam, P., Sapru, R.K., Sharma, R.K., & Ganesh, A. (2012). Experiments and kinetic modeling for CO2 gasification of Indian coal chars in the context of underground coal gasification. Industrial & Engineering Chemistry Research, 51(46), 15041-15052. https://doi.org/10.1021/ie3022434
  157. Yin, Z., Xu, H., Chen, Y., Zhao, T., & Wu, J. (2023). Experimental simulate on hydrogen production of different coals in underground coal gasification. International Journal of Hydrogen Energy, 48(19), 6975-6985. https://doi.org/10.1016/j.ijhydene.2022.03.205
  158. Svetkina, Y., Falshtyns’kyy, V., & Dychkovs’kyy, R. (2010). Features of selectivity process of borehole underground coal gasification. New Techniques and Technologies in Mining, 219-222. https://doi.org/10.1201/b11329-36
  159. Zhang, F., Xu, D., Wang, Y., Argyle, M.D., & Fan, M. (2015). CO2 gasification of Powder River Basin coal catalyzed by a cost-effective and environmentally friendly iron catalyst. Applied Energy, (145), 295-305. https://doi.org/10.1016/j.apenergy.2015.01.098
  160. Kumari, G., & Vairakannu, P. (2018). CO2-O2 dry reforming based underground coal gasification using low and high ash Indian coals. Fuel, (216), 301-312. https://doi.org/10.1016/j.fuel.2017.11.117
  161. Arnold, R.A., & Hill, J.M. (2019). Catalysts for gasification: A review. Sustainable Energy & Fuels, 3(3), 656-672. https://doi.org/10.1039/C8SE00614H
  162. Liu, H., Guo, W., & Liu, S. (2022). Comparative techno-economic performance analysis of underground coal gasification and surface coal gasification based coal-to-hydrogen process. Energy, (258), 125001. https://doi.org/10.1016/j.energy.2022.125001
  163. Dychkovskyi, R. (2013). Naukovi zasady syntezu tekhnolohii vydobuvannia vuhillia u slabometamorfizovanykh porodakh. Dnipropetrovsk, Ukraina: NMU, 352 p.
  164. Fisher, S.T. (1979). Processing of coal, oil sand and heavy oil in situ by electric and magnetic fields. Canadian Electrical Engineering Journal, 4(4), 15-18. https://doi.org/10.1109/CEEJ.1979.6593931
  165. Balanis, C.A. (1983). Electromagnetic techniques in the development of coal-derived energy sources – A review. Journal of Microwave Power, 18(1), 45-54. https://doi.org/10.1080/16070658.1983.11689309
  166. Selimefendigil, F., Öztop, H.F., & Abu-Hamdeh, N. (2016). Natural convection and entropy generation in nanofluid filled entrapped trapezoidal cavities under the influence of magnetic field. Entropy, 18(2), 43. https://doi.org/10.3390/e18020043
  167. He, X., Ma, T., Qiu, J., Sun, T., Zhao, Z., Zhou, Y., & Zhang, J. (2004). Mechanism of coal gasification in a steam medium under arc plasma conditions. Plasma Sources Science and Technology, 13(3), 446. https://doi.org/10.1088/0963-0252/13/3/011
  168. Liu, W., Niu, S., Tang, H., & Zhou, K. (2021). Pore structure evolution during lignite pyrolysis based on nuclear magnetic resonance. Case Studies in Thermal Engineering, (26), 101125. https://doi.org/10.1016/j.csite.2021.101125
  169. Selivanova, T., & Pechnikov, V. (2013). Thermo-chemical conversion of coal samples under high temperature. Global Geology, 16(3), 144-148.
  170. Lozynskyi, V., Falshtynskyi, V., Saik, P., Dychkovskyi, R., Zhautikov, B., Cabana, E. (2022). Use of magnetic fields for intensification of coal gasification process. Rudarsko-Geološko-Naftni Zbornik, 37(5), 61-74. https://doi.org/10.17794/rgn.2022.5.6
  171. Falshtynskyy, V., Dychkovskyy, R., Lozynskyy, V., & Saik, P. (2012). New method for justification the technological parameters of coal gasification in the test setting. Geomechanical Processes During Underground Mining, 201-208. https://doi.org/10.1201/b13157-35
  172. Kapusta, K., Wiatowski, M., Thomas, H.R., Zagorščak, R., Sadasivam, S., Masum, S., & Stańczyk, K. (2023). Experimental simulations of methane-oriented underground coal gasification using hydrogen – The effect of coal rank and gasification pressure on the hydrogasification process. International Journal of Hydrogen Energy, 48(3), 921-932. https://doi.org/10.1016/j.ijhydene.2022.10.012
  173. Kahraman, U., & Dincer, I. (2023). Development and assessment of an integrated underground gasification system for cleaner outputs. Energy, (285), 128676. https://doi.org/10.1016/j.energy.2023.128676
  174. Li, G., Duan, T., Li, X., Wang, Z., & Zhang, P. (2022). Establishment and application of a two‐stage reaction equilibrium model for underground coal gasification. International Journal of Energy Research, 46(15), 22679-22689. https://doi.org/10.1002/er.8571
  175. Kačur, J., Laciak, M., Durdán, M., Flegner, P., & Frančáková, R. (2023). A review of research on advanced control methods for underground coal gasification processes. Energies, 16(8), 3458. https://doi.org/10.3390/en16083458
  176. Bazaluk, O., Lozynskyi, V., Falshtynskyi, V., Saik, P., Dychkovskyi, R., & Cabana, E. (2021). Experimental studies of the effect of design and technological solutions on the intensification of an underground coal gasification process. Energies, 14(14), 4369. https://doi.org/10.3390/en14144369
  177. Falshtyns’kyy, V., Dychkovs’kyy, R., Lozyns’kyy, V., & Saik, P. (2013). Justification of the gasification channel length in underground gas generator. Annual Scientific-Technical Collection – Mining of Mineral Deposits, 125-132. https://doi.org/10.1201/b16354-22
  178. Falshtynskyi, V., Dychkovskyi, R., Saik, P., & Lozynskyi, V. (2014). Some aspects of technological processes control of an in-situ gasifier during coal seam gasification. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining, 109-112. https://doi.org/10.1201/b17547-20
  179. Biswas, A.K., Wattanasrirote, W., Techato, K., Phoungthong, K., & Wae-Hayee, M. (2023). Selection criteria of coalfields for underground coal gasification (UCG). AIP Conference Proceedings, 2689(1), 0300004. https://doi.org/10.1063/5.0114576
  180. Huang, W.G., Zhang, S.W., Wang, G.Z., Huang, J., Lu, X., Wu, S.L., & Wang, Z.T. (2023). Modeling methodology for site selection evaluation of underground coal gasification based on combination weighting method with game theory. ACS Omega, 8(12), 11544-11555. https://doi.org/10.1021/acsomega.3c00626
  181. Ghasemi, M., Omrani, S., Mahmoodpour, S., & Zhou, T. (2022). Molecular dynamics simulation of hydrogen diffusion in water-saturated clay minerals; implications for Underground Hydrogen Storage (UHS). International Journal of Hydrogen Energy, 47(59), 24871-24885. https://doi.org/10.1016/j.ijhydene.2022.05.246
  182. Zhang, Z., Yang, X., Shang, X., & Yang, H. (2022). A thermal-hydrological-mechanical-chemical coupled mathematical model for underground coal gasification with random fractures. Mathematics, 10(16), 2835. https://doi.org/10.3390/math10162835
  183. Wiatowski, M., Kapusta, K., Strugała-Wilczek, A., Stańczyk, K., Castro-Muñiz, A., Suárez-García, F., & Paredes, J.I. (2023). Large-Scale experimental simulations of in situ coal gasification in terms of process efficiency and physicochemical properties of process by-products. Energies, 16(11), 4455. https://doi.org/10.3390/en16114455
  184. Zhou, H., Wu, C., Chen, H., Du, M., Wang, Z., & Jiang, X. (2022). Numerical simulation of the temperature distribution and evolution law of underground lignite gasification. ACS Omega, 7(8), 6885-6899. https://doi.org/10.1021/acsomega.1c06559
  185. An, N., Zagorščak, R., & Thomas, H.R. (2022). Transport of heat, moisture, and gaseous chemicals in hydro-mechanically altered strata surrounding the underground coal gasification reactor. International Journal of Coal Geology, (249), 103879. https://doi.org/10.1016/j.coal.2021.103879
  186. Riasetiawan, M., Anggara, F., & Syahra, V. (2022). Implementing the calculations and characterization of underground coal gasification using data analytic method. Civil Engineering Journal, (7), 171-181. https://doi.org/10.28991/CEJ-SP2021-07-012
  187. Zagorščak, R., Metcalfe, R., Limer, L., Thomas, H., An, N., Bond, A., & Watson, S. (2022). Risk assessment methodology for Underground Coal Gasification technology. Journal of Cleaner Production, (370), 133493. https://doi.org/10.1016/j.jclepro.2022.133493
  188. Anggara, F., Riasetiawan, M., Assamarqandi, F.R., Sartika, B.F., Rizaldi, I.J., Syahra, V., & Rahmat, S.B. (2022). Screening criteria of underground coal gasification (UCG): A case study from Mangunjaya Area, South Sumatra Basin, Indonesia. IOP Conference Series: Earth and Environmental Science, 1071(1), 012023. https://doi.org/10.1088/1755-1315/1071/1/012023
  189. Yang, L.H. (2008) A review of the factors influencing the physicochemical characteristics of underground coal gasification. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 30(11), 1038-1049. https://doi.org/10.1080/15567030601082803
  190. Лицензия Creative Commons