Critical review of methods for intensifying the gas generation process in the reaction channel during underground coal gasification (UCG)
Vasyl Lozynskyi1
1Dnipro University of Technology, Dnipro, Ukraine
Min. miner. depos. 2023, 17(3):67-85
https://doi.org/10.33271/mining17.03.067
Full text (PDF)
      ABSTRACT
      Purpose. The research purpose is to perform a critical analysis of methods for intensifying the gas generation process in the reaction channel to improve the efficiency and economic feasibility of coal seam gasification technology. The paper studies in detail the aspects of the chemical mechanism and technological parameters of this process in order to determine the possibilities for improving efficiency and productivity.
      Methods. The review study is based on an approach that includes an analysis of the underground coal gasification development, the study of chemical reactions in the reaction channel, the study of the influence of factors such as temperature, pressure, blast and producer gas composition, etc. The experimental research data systematization is based on in-depth analysis of scientific papers published in peer-reviewed journals.
      Findings. The systematized results of research into nine main methods for intensifying the gas generation process in the reaction channel during underground coal gasification are presented. The factors having the greatest influence on gas generation in the reaction channel have been identified.
      Originality. Research results indicate the possibility of improving the process of underground coal gasification. The revealed relationships between different factors contribute to a deeper understanding of the chemical and physical processes in the reaction channel.
      Practical implications. The results obtained can be used to optimize the underground coal gasification process, increase the productivity and quality of gas generation. The specified results can serve as a basis for further scientific research and innovative developments in obtaining an alternative type of fuel.
      Keywords: underground coal gasification, gas generation, intensification, chemical reactions, efficiency, optimization
      REFERENCES
- Boretti, A. (2023). Supply of abundant and low-cost total primary energy to a growing world needs nuclear energy and hydrogen energy storage. International Journal of Hydrogen Energy, 48(5), 1649-1650. https://doi.org/10.1016/j.ijhydene.2022.09.210
- Holechek, J.L., Geli, H.M., Sawalhah, M.N., & Valdez, R. (2022). A global assessment: can renewable energy replace fossil fuels by 2050? Sustainability, 14(8), 4792. https://doi.org/10.3390/su14084792
- Moldabayeva, G., & Abileva, S. (2021). Study and determination of regularities in variability of oil rheological properties to enhance oil recovery. Periodicals of Engineering and Natural Sciences (PEN), 9(4), 44-60. https://doi.org/10.21533/pen.v9i4.2299
- Dyczko, A., Kamiński, P., Stecuła, K., Prostański, D., Kopacz, M., & Kowol, D. (2021). Thermal and mechanical energy storage as a chance for energy transformation in Poland. Polityka Energetyczna, 24(3), 43-60. https://doi.org/10.33223/epj/141867
- Bondarenko, V., Salieiev, I., Kovalevska, I., Chervatiuk, V., Malashkevych, D., Shyshov, M., & Chernyak, V. (2023). A new concept for complex mining of mineral raw material resources from DTEK coal mines based on sustainable development and ESG strategy. Mining of Mineral Deposits, 17(1), 1-16. https://doi.org/10.33271/mining17.01.001
- Krewitt, W., Teske, S., Simon, S., Pregger, T., Graus, W., Blomen, E., Schmid, S., & Schäfer, O. (2009). Energy [R]evolution 2008 – A sustainable world energy perspective. Energy Policy, 37(12), 5764-5775. https://doi.org/10.1016/j.enpol.2009.08.042
- Dyczko, A. (2023). Production management system in a modern coal and coke company based on the demand and quality of the exploited raw material in the aspect of building a service-oriented architecture. Journal of Sustainable Mining, 22(1), 2-19. https://doi.org/10.46873/2300-3960.1371
- Koveria, A., Kieush, L., Usenko, A., & Sova, A. (2023). Study of cellulose additive effect on the caking properties of coal. Mining of Mineral Deposits, 17(2), 1-8. https://doi.org/10.33271/mining17.02.001
- Dyczko, A. (2023). Real-time forecasting of key coking coal quality parameters using neural networks and artificial intelligence. Rudarsko-Geološko-Naftni Zbornik, 38(3), 105-117. https://doi.org/10.17794/rgn.2023.3.9
- Joshi, A., Shah, V., Mohapatra, P., Kumar, S., Joshi, R.K., Kathe, M., & Fan, L.S. (2021). Chemical looping-A perspective on the next-gen technology for efficient fossil fuel utilization. Advances in Applied Energy, (3), 100044. https://doi.org/10.1016/j.adapen.2021.100044
- Rehman, A., Ma, H., Chishti, M. Z., Ozturk, I., Irfan, M., & Ahmad, M. (2021). Asymmetric investigation to track the effect of urbanization, energy utilization, fossil fuel energy and CO2 emission on economic efficiency in China: Another outlook. Environmental Science and Pollution Research, (28), 17319-17330. https://doi.org/10.1007/s11356-020-12186-w
- Hosseini, S.E. (2022). Transition away from fossil fuels toward renewables: Lessons from Russia-Ukraine crisis. Future Energy, 1(1), 2-5. https://orcid.org/0000-0002-0907-9427
- Sathre, R. (2014). Comparing the heat of combustion of fossil fuels to the heat accumulated by their lifecycle greenhouse gases. Fuel, (115), 674-677. https://doi.org/10.1016/j.fuel.2013.07.069
- Lapčík, V., Lapčík, M., & Lapčík Jr, V. (2022). Current aspects of decarbonisation in the Czech Republic and possibilities of replacement of coal energy sources by renewable sources of electric energy. Inżynieria Mineralna, 1(1), 87-96. https://doi.org/10.29227/IM-2022-01-11
- Karmaker, A.K., Rahman, M.M., Hossain, M.A., & Ahmed, M.R. (2020). Exploration and corrective measures of greenhouse gas emission from fossil fuel power stations for Bangladesh. Journal of Cleaner Production, (244), 118645. https://doi.org/10.1016/j.jclepro.2019.118645
- Koval, V., Kryshtal, H., Udovychenko, V., Soloviova, O., Froter, O., Kokorina, V., & Veretin, L. (2023). Review of mineral resource management in a circular economy infrastructure. Mining of Mineral Deposits, 17(2), 61-70. https://doi.org/10.33271/mining17.02.061
- Cantarero, M.M.V. (2020). Of renewable energy, energy democracy, and sustainable development: A roadmap to accelerate the energy transition in developing countries. Energy Research & Social Science, (70), 101716. https://doi.org/10.1016/j.erss.2020.101716
- Piwniak, G.G., Bondarenko, V.I., Salli, V.I., Pavlenko, I.I., & Dychkovskiy, R.O. (2007). Limits to economic viability of extraction of thin coal seams in Ukraine. Technical, Technological and Economic Aspects of Thin-Seams Coal Mining, 129-132. https://doi.org/10.1201/noe0415436700.ch16
- Carley, S., & Konisky, D.M. (2020). The justice and equity implications of the clean energy transition. Nature Energy, 5(8), 569-577. https://doi.org/10.1038/s41560-020-0641-6
- Falshtynskyi, V.S. (2009). Improvement of technology of borehole underground coal gasification. Dnipropetrovsk, Ukraina: NMU, 180 p.
- Konovšek, D., Nadvežnik, J., & Medved, M. (2017, July). An overview of world history of underground coal gasification. AIP Conference Proceedings, 1866(1), 050004. https://doi.org/10.1063/1.4994528
- Klimenko, A.Y. (2018). Early developments and inventions in underground coal gasification. Underground Coal Gasification and Combustion, 11-24. https://doi.org/10.1016/B978-0-08-100313-8.00002-5
- Olateju, B., & Kumar, A. (2013). Techno-economic assessment of hydrogen production from underground coal gasification (UCG) in Western Canada with carbon capture and sequestration (CCS) for upgrading bitumen from oil sands. Applied Energy, (111), 428-440. https://doi.org/10.1016/j.apenergy.2013.05.014
- Xie, J., Xin, L., Hu, X., Cheng, W., Liu, W., & Wang, Z. (2020). Technical application of safety and cleaner production technology by underground coal gasification in China. Journal of Cleaner Production, (250), 119487. https://doi.org/10.1016/j.jclepro.2019.119487
- Li, Y., Liang, X., & Liang, J. (2007). An overview of the Chinese UCG program. Data Science Journal, (6), S460-S466. https://doi.org/10.2481/dsj.6.S460
- Bhutto, A.W., Bazmi, A.A., & Zahedi, G. (2013). Underground coal gasification: From fundamentals to applications. Progress in Energy and Combustion Science, 39(1), 189-214. https://doi.org/10.1016/j.pecs.2012.09.004
- Derbin, Y., Walker, J., Wanatowski, D., & Marshall, A. (2015). Soviet experience of underground coal gasification focusing on surface subsidence. Journal of Zhejiang University: Science A, 16(10), 839-850. https://doi.org/10.1631/jzus.A1500013
- Gregg, D.W., Hill, R.W., & Olness, D.U. (1976). An overview of the Soviet effort in underground coal gasification. Report UCRL-52004. Livermore, United States: Lawrence Livermore Laboratory.
- Khadse, A., Qayyumi, M., Mahajani, S., & Aghalayam, P. (2007). Underground coal gasification: A new clean coal utilization technique for India. Energy, 32(11), 2061-2071. https://doi.org/10.1016/j.energy.2007.04.012
- Khan, M.M., Mmbaga, J.P., Shirazi, A.S., Trivedi, J., Liu, Q., & Gupta, R. (2015). Modelling underground coal gasification – A review. Energies, 8(11), 12603-12668. https://doi.org/10.3390/en81112331
- Klimenko, A.Y. (2009). Early ideas in underground coal gasification and their evolution. Energies, 2(2), 456-476. https://doi.org/10.3390/en20200456
- Ming, Z., Daoyi, X., & Wenpeng, S. (2012). Rapid progress of underground coal gasification in the world. Chinese Journal of Nature, 34(3), 161-166.
- Ming, Z., Daoyi, X., Wenpeng, S., Zuotang, W., Meng, H., & Xuedong, Y. (2013). History and present status of underground coal gasification technology in overseas countries. Coal Science and Technology, 41(5), 4-9.
- Mocek, P., Pieszczek, M., Świądrowski, J., Kapusta, K., Wiatowski, M., & Stańczyk, K. (2016). Pilot-scale underground coal gasification (UCG) experiment in an operating Mine “Wieczorek” in Poland. Energy, (111), 313-321. https://doi.org/10.1016/j.energy.2016.05.087
- Perkins, G. (2018). Underground coal gasification – Part I: Field demonstrations and process performance. Progress in Energy and Combustion Science, (67), 158-187. https://doi.org/10.1016/j.pecs.2018.02.004
- Chen, S.-Y., Li, L.-Z., Cui, J.-Y., Zhang, Y., & Wu, X.-D. (2014). Advances of underground coal gasification (UCG) and industrial development. Resources & Industries, 16(5), 129.
- Zou, C., Chen, Y., Kong, L., Sun, F., Chen, S., & Dong, Z. (2019). Underground coal gasification and its strategic significance to the development of natural gas industry in China. Petroleum Exploration and Development, 46(2), 205-215. https://doi.org/10.1016/S1876-3804(19)60002-9
- Bondarenko, V., Tabachenko, M., & Wachowicz, J. (2010). Possibility of production complex of sufficient gasses in Ukraine. New Techniques and Technologies in Mining, 113-119. https://doi.org/10.1201/b11329-19
- Falshtynskyi, V., Saik, P., Lozynskyi, V., Dychkovskyi, R., & Petlovanyi, M. (2018). Innovative aspects of underground coal gasification technology in mine conditions. Mining of Mineral Deposits, 12(2), 68-75. https://doi.org/10.15407/mining12.02.068
- Buktukov, N.S., Gumennikov, E.S., Mashataeva, G.A. (2019). In-situ gasification of steeply dipping coal beds with production hole making by supersonic hydraulic jets. Mining Informational and Analytical Bulletin, (9), 30-40. https://doi.org/10.25018/0236-1493-2019-09-0-30-40
- Saik, P., Petlovanyi, M., Lozynskyi, V., Sai, K., & Merzlikin, A. (2018). Innovative approach to the integrated use of energy resources of underground coal gasification. Solid State Phenomena, (277), 221-231. https://doi.org/10.4028/www.scientific.net/SSP.277.221
- Schrider, L.A., & Jennings, J.W. (1974). An underground coal gasification experiment, Hanna, Wyoming. SPE Annual Technical Conference and Exhibition, SPE-4993. https://doi.org/10.1080/00908317508945955
- Luo, J.A., & Wang, L. (2011). High-temperature mechanical properties of mudstone in the process of underground coal gasification. Rock Mechanics and Rock Engineering, (44), 749-754. https://doi.org/10.1007/s00603-011-0168-z
- Fischer, D.D., Brandenburg, C.F., & Schrider, L.A. (1975). Energy recovery from in situ coal gasification. Energy Sources, 2(3), 281-292.
- Davis, B.E., & Jennings, J.W. (1984). State-of-the-art summary for underground coal gasification. Journal of Petroleum Technology, 36(01), 15-21. https://doi.org/10.2118/12815-PA
- Huang, W.G., Zhang, S.W., Lu, X., Wu, S.L., & Huang, J. (2022). Residual coal distribution in China and adaptability evaluation of its resource conditions to underground coal gasification. Sustainable Energy Technologies and Assessments, (49), 101654. https://doi.org/10.1016/j.seta.2021.101654
- Sajjad, M., & Rasul, M. G. (2014). Review on the existing and developing underground coal gasification techniques in abandoned coal seam gas blocks: Australia and global context. International e-Conference on Energies, 14-31.
- Blinderman, M.S., & Anderson, B. (2004). Underground coal gasification for power generation: high efficiency and CO2-emissions. ASME Power Conference, (41626), 473-479. https://doi.org/10.1115/POWER2004-52036
- Richardson, R.J., & Singh, S. (2012). Prospects for underground coal gasification in Alberta, Canada. Institution of Civil Engineers-Energy, 165(3), 125-136. https://doi.org/10.1680/ener.11.00035
- Yang, L., Liang, J., & Yu, L. (2003). Clean coal technology-Study on the pilot project experiment of underground coal gasification. Energy, 28(14), 1445-1460. https://doi.org/10.1016/S0360-5442(03)00125-7
- Jiang, L., Xue, D., Wei, Z., Chen, Z., Mirzayev, M., Chen, Y., & Chen, S. (2022). Coal decarbonization: A state-of-the-art review of enhanced hydrogen production in underground coal gasification. Energy Reviews, 1(1), 100004. https://doi.org/10.1016/j.enrev.2022.100004
- Khadse, A.N. (2015). Resources and economic analyses of underground coal gasification in India. Fuel, (142), 121-128. https://doi.org/10.1016/j.fuel.2014.10.057
- Sajjad, M., & Rasul, M.G. (2015). Prospect of underground coal gasification in Bangladesh. Procedia Engineering, (105), 537-548. https://doi.org/10.1016/j.proeng.2015.05.087
- Nieć, M., Sermet, E., Chećko, J., & Górecki, J. (2017). Evaluation of coal resources for underground gasification in Poland. Selection of possible UCG sites. Fuel, (208), 193-202. https://doi.org/10.1016/j.fuel.2017.06.087
- Chen, Y., Chen, H., Zhen, D., Xue, J., & Zhang, M. (2022). Development foundation and technical countermeasure of middle-deep underground coal gasification in China. International Symposium on Project Management, 745-757. https://doi.org/10.52202/065147-0102
- Xiao, Y., Yin, J., Hu, Y., Wang, J., Yin, H., & Qi, H. (2019). Monitoring and control in underground coal gasification: Current research status and future perspective. Sustainability, 11(1), 217. https://doi.org/10.3390/su11010217
- Akanksha, Singh, A.K., Mohantya, D., & Jena, H.M. (2017). Deployment of underground coal gasification in India. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 39(16), 1762-1770. https://doi.org/10.18520/cs/v113/i02/218-227
- Dychkovskyi, R.O., Avdiushchenko, A.S., Falshtynskyi, V.S., & Saik, P.B. (2013). On the issue of estimation of the coal mine extraction area economic efficiency. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 107-114.
- Liu, H., & Liu, S. (2021). Life cycle energy consumption and GHG emissions of hydrogen production from underground coal gasification in comparison with surface coal gasification. International Journal of Hydrogen Energy, 46(14), 9630-9643. https://doi.org/10.1016/j.ijhydene.2020.12.096
- Verma, A., & Kumar, A. (2015). Life cycle assessment of hydrogen production from underground coal gasification. Applied Energy, (147), 556-568. https://doi.org/10.1016/j.apenergy.2015.03.009
- Yang, L., Zhang, X., Liu, S., Yu, L., & Zhang, W. (2008). Field test of large-scale hydrogen manufacturing from underground coal gasification (UCG). International Journal of Hydrogen Energy, 33(4), 1275-1285. https://doi.org/10.1016/j.ijhydene.2007.12.055
- Kapusta, K., Wiatowski, M., Stańczyk, K., Zagorščak, R., & Thomas, H.R. (2020). Large-scale experimental investigations to evaluate the feasibility of producing methane-rich gas (SNG) through underground coal gasification process. Effect of coal rank and gasification pressure. Energies, 13(6), 1334. https://doi.org/10.3390/en13061334
- Dychkovskyi, R., Shavarskyi, J., Cabana, E.C., & Smoliński, A. (2019). Characteristic of possible obtained products during the well underground coal gasification. Solid State Phenomena, (291), 52-62. https://doi.org/10.4028/www.scientific.net/ssp.291.52
- Czop, M., Kajda-Szcześniak, M., Zajusz-Zubek, E., Biss, W., Bochenko, A., Brzezina, Ł., & Turyła, K. (2022). The role of slag from the combustion of slid municipal waste in circular economy. Inżynieria Mineralna, 1(2), 145-150. https://doi.org/10.29227/IM-2022-02-19
- Falshtynskyi, V.S., Dychkovskyi, R.O., Saik, P.B., Lozynskyi, V.H., & Cabana, E.C. (2017). Formation of thermal fields by the energy-chemical complex of coal gasification. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 36-42.
- Pіvnyаk, G., Dychkоvskyі, R., Bоbylіоv, О., Cаbаnа, Е. C., & Smоlіńskі, А. (2018). Mаthеmаtіcаl аnd gеоmеchаnіcаl mоdеl іn physіcаl аnd chеmіcаl prоcеssеs оf undеrgrоund cоаl gаsіfіcаtіоn. Sоlіd Stаtе Phеnоmеnа, (277), 1-16. https://doi.org/10.4028/www.scientific.net/ssp.277.1
- Saik, P.B. (2014). On the issue of simultaneous gasification of contiguous low-coal seams. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 33-37.
- Saik, P.B., Dychkovskyi, R.O., Lozynskyi, V.H., Malanchuk, Z.R., & Malanchuk, Ye.Z. (2016). Revisiting the underground gasification of coal reserves from contiguous seams. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 60-66.
- Kolokolov, O.V. (2000). Teoriya i praktika termohimicheskoy tehnologii dobyichi i pererabotki uglya. Dnepropetrovsk, Ukraina: NGA, 255 p.
- Perkins, G. (2018). Underground coal gasification – Part II: Fundamental phenomena and modeling. Progress in Energy and Combustion Science, (67), 234-274. https://doi.org/10.1016/j.pecs.2018.03.002
- Hobbs, M.L., Radulovic, P.T., & Smoot, D.L. (1993). Combustion and gasification of coals in fixed-beds. Progress in Energy and Combustion Science, 19(6), 505-586. https://doi.org/10.1016/0360-1285(93)90003-W
- Higman, C., & van der Burgt, M. (2008). Gasification processes. Gasification, 91-191. https://doi.org/10.1016/b978-0-7506-8528-3.00005-5
- Yuewu, L., Huijun, F., Longlong, L., Tengze, G., Taiyi, Z., Danlu, L., & Jiuge, D. (2022). Recent progress on numerical research of key mechanical problems during underground coal gasification. Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 54(12), 1-17. https://doi.org/10.6052/0459-1879-22-331
- Takyi, S.A., Zhang, Y., Si, M., Zeng, F., Li, Y., & Tontiwachwuthikul, P. (2023). Current status and technology development in implementing low carbon emission energy on underground coal gasification (UCG). Frontiers in Energy Research, (10), 1051417. https://doi.org/10.3389/fenrg.2022.1051417
- Zhang, Y., Gu, B., Zhou, C., & Wan, Z. (2022). Numerical simulation on gas production characteristics during underground coal gasification. Journal of Mining and Safety Engineering, 39(6), 1169-1176. https://doi.org/10.13545/j.cnki.jmse.2022.0091
- Mandal, R., & Maity, T. (2023). Operational process parameters of underground coal gasification technique and its control. Journal of Process Control, (129), 103031. https://doi.org/10.1016/j.jprocont.2023.103031
- Scheffknecht, G., Al-Makhadmeh, L., Schnell, U., & Maier, J. (2011). Oxy-fuel coal combustion – A review of the current state-of-the-art. International Journal of Greenhouse Gas Control, (5), S16-S35. https://doi.org/10.1016/j.ijggc.2011.05.020
- Huffman, G.P., Huggins, F.E., Shah, N., & Shah, A. (1990). Behavior of basic elements during coal combustion. Progress in Energy and Combustion Science, 16(4), 243-251. https://doi.org/10.1016/0360-1285(90)90033-Y
- Liang, Y., Yang, Y., Guo, S., Tian, F., & Wang, S. (2023). Combustion mechanism and control approaches of underground coal fires: A review. International Journal of Coal Science & Technology, 10(1), 24. https://doi.org/10.1007/s40789-023-00581-w
- Song, G.C., Xu, W.T., Yang, X.Y., & Song, Q. (2022). Coupling effects of mineral components on arsenic transformation during coal combustion. Journal of Hazardous Materials, (435), 129040. https://doi.org/10.1016/j.jhazmat.2022.129040
- Petlovanyi, M., Lozynskyi, V., Saik, P., & Sai, K. (2019). Predicting the producing well stability in the place of its curving at the underground coal seams gasification. E3S Web of Conferences, (123), 01019. https://doi.org/10.1051/e3sconf/201912301019
- Mandapati, R.N., & Ghodke, P. (2020). Modeling of gasification process of Indian coal in perspective of underground coal gasification (UCG). Environment, Development and Sustainability, 22(7), 6171-6186. https://doi.org/10.1007/s10668-019-00469-3
- Lozynskyi, V.H., Dychkovskyi, R.O., Falshtynskyi, V.S., & Saik, P.B. (2015). Revisiting possibility to cross disjunctive geological faults by underground gasifier. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 22-28.
- Lozynskyi, V.G., Dychkovskyi, R.O., Falshtynskyi, V.S., Saik, P.B., & Malanchuk, Ye.Z. (2016). Experimental study of the influence of crossing the disjunctive geological faults on thermal regime of underground gasifier. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 21-29.
- Yerizam, M., Zulatama, A., & Syarif, A. (2021). Effect of oxygen flow rate on combustion time and temperature of underground coal gasification. International Journal of Research in Vocational Studies, 1(2), 27-33.
- Liu, X., Guo, G., & Li, H. (2019). Study on the propagation law of temperature field in surrounding rock of underground coal gasification (UCG) combustion cavity based on dynamic thermal parameters. Results in Physics, (12), 1956-1963. https://doi.org/10.1016/j.rinp.2019.02.006
- Liu, X., Guo, G., & Li, H. (2020). Thermo-mechanical coupling numerical simulation method under high temperature heterogeneous rock and application in underground coal gasification. Energy Exploration & Exploitation, 38(4), 1118-1139. https://doi.org/10.1177/01445987198889
- Wang, Z., Wei, Y., Hou, T., Jin, Y., Wang, C., & Liang, J. (2020). Large-scale laboratory study on the evolution law of temperature fields in the context of underground coal gasification. Chinese Journal of Chemical Engineering, 28(12), 3126-3135. https://doi.org/10.1016/j.cjche.2020.07.005
- Gür, M., & Canbaz, E.D. (2020). Analysis of syngas production and reaction zones in hydrogen oriented underground coal gasification. Fuel, (269), 117331. https://doi.org/10.1016/j.fuel.2020.117331
- Shafirovich, E., Mastalerz, M., Rupp, J., & Varma, A. (2008). The potential for underground coal gasification in Indiana. Phase I Report to the Indiana Center for Coal Technology Research. West Lafayette, Indiana, 25 p.
- Żogała, A. (2014). Equilibrium simulations of coal gasification – factors affecting syngas composition. Journal of Sustainable Mining, 13(2), 30-38. https://doi.org/10.7424/jsm140205
- Chen, Z., Zhu, F., Zhang, Y., Lv, W., & Zhang, Z. (2021). Development of gasification agent injection tool for underground coal gasification. E3S Web of Conferences, (267), 02056. https://doi.org/10.1051/e3sconf/202126702056
- Yang, L.H., & Ding, Y.M. (2009). Numerical study on convection diffusion for gasification agent in underground coal gasification (UCG). Part II: Determination of model parameters and results analysis. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 31(4), 318-324. https://doi.org/10.1080/15567030701527723
- Liu, S. Q., Liu, J. H., & Yu, L. (2002). Environmental benefits of underground coal gasification. Journal of Environmental Sciences, 14(2), 284-288.
- Wang, Z.T., Huang, W.G., Zhang, P., & Xin, L. (2011). A contrast study on different gasifying agents of underground coal gasification at Huating Coal Mine. Journal of Coal Science and Engineering (China), (17), 181-186. https://doi.org/10.1007/s12404-011-0214-1
- Nakaten, N., Kempka, T., Burchart-Korol, D., Krawczyk, P., Kapusta, K., & Stańczyk, K. (2016). Techno-economic analysis for the evaluation of three UCG synthesis gas end use approaches. EGU General Assembly Conference Abstracts, EPSC2016-13898.
- Jowkar, A., Sereshki, F., & Najafi, M. (2020). Numerical simulation of UCG process with the aim of increasing calorific value of syngas. International Journal of Coal Science & Technology, (7), 196-207.https://doi.org/10.1007/s40789-019-00288-x
- Sarhosis, V., Kapusta, K., & Lavis, S. (2018). Underground coal gasification (UCG) in Europe: Field trials, laboratory experiments, and EU-funded projects. Underground Coal Gasification and Combustion, 129-171. https://doi.org/10.1016/B978-0-08-100313-8.00005-0
- Durucan, S., Korre, A., Shi, J.Q., Idiens, M., Stańczyk, K., Kapusta, K., & Mastalerz, M. (2014). TOPS: Technology options for coupled underground coal gasification and CO2 capture and storage. Energy Procedia, (63), 5827-5835. https://doi.org/10.1016/j.egypro.2014.11.616
- Kapusta, K., Wiatowski, M., & Stańczyk, K. (2016). An experimental ex-situ study of the suitability of a high moisture ortho-lignite for underground coal gasification (UCG) process. Fuel, (179), 150-155. https://doi.org/10.1016/j.fuel.2016.03.093
- Hongtao, L., Feng, C., Xia, P., Kai, Y., & Shuqin, L. (2011). Method of oxygen-enriched two-stage underground coal gasification. Mining Science and Technology (China), 21(2), 191-196. https://doi.org/10.1016/j.mstc.2011.02.018
- Stańczyk, K., Howaniec, N., Smoliński, A., Świądrowski, J., Kapusta, K., Wiatowski, M., & Rogut, J. (2011). Gasification of lignite and hard coal with air and oxygen enriched air in a pilot scale ex situ reactor for underground gasification. Fuel, 90(5), 1953-1962. https://doi.org/10.1016/j.fuel.2010.12.007
- Su, F.Q., Zhang, T., Wu, J.B., Deng, Q.C., Hamanaka, A., Yu, Y.H., & Yang, J.N. (2022). Energy recovery evaluation and temperature field research of underground coal gasification under different oxygen concentrations. Fuel, (329), 125389. https://doi.org/10.1016/j.fuel.2022.125389
- Li, J., Chen, Z., Zhang, X., Qiao, Y., Yuan, Z., & Li, Z. (2023). Thermal conversion, kinetics, thermodynamics and empirical optimization of combustion performance of coal gasification fine ash in oxygen-enriched atmosphere. Fuel, (331), 125882. https://doi.org/10.1016/j.fuel.2022.125882
- Wang, G.X., Wang, Z.T., Feng, B., Rudolph, V., & Jiao, J.L. (2009). Semi-industrial tests on enhanced underground coal gasification at Zhong-Liang-Shan coal mine. Asia-Pacific Journal of Chemical Engineering, 4(5), 771-779. https://doi.org/10.1002/apj.337
- Pankiewicz-Sperka, M., Kapusta, K., Basa, W., & Stolecka, K. (2021). Characteristics of water contaminants from underground coal gasification (UCG) process-effect of coal properties and gasification pressure. Energies, 14(20), 6533. https://doi.org/10.3390/en14206533
- Zagorščak, R., Sadasivam, S., Thomas, H. R., Stańczyk, K., & Kapusta, K. (2020). Experimental study of underground coal gasification (UCG) of a high-rank coal using atmospheric and high-pressure conditions in an ex-situ reactor. Fuel, (270), 117490. https://doi.org/10.1016/j.fuel.2020.117490
- Liu, S., Wang, Y., Yu, L., & Oakey, J. (2006). Thermodynamic equilibrium study of trace element transformation during underground coal gasification. Fuel Processing Technology, 87(3), 209-215. https://doi.org/10.1016/j.fuproc.2005.07.006
- Hu, Z., Peng, Y., Sun, F., Chen, S., & Zhou, Y. (2021). Thermodynamic equilibrium simulation on the synthesis gas composition in the context of underground coal gasification. Fuel, (293), 120462. https://doi.org/10.1016/j.fuel.2021.120462
- Konstantinou, E., & Marsh, R. (2015). Experimental study on the impact of reactant gas pressure in the conversion of coal char to combustible gas products in the context of underground coal gasification. Fuel, (159), 508-518. https://doi.org/10.1016/j.fuel.2015.06.097
- Sha, X., Chen, Y., Cao, J., Yang, Y., & Ren, D. (1990). Effects of operating pressure on coal gasification. Fuel, 69(5), 656-659. https://doi.org/10.1016/0016-2361(90)90157-l
- Sadovenko, I.O., Inkin, O.V., Dereviahina, N.I., & Hriplivec, Y.V. (2018). Analyzing the parameters influencing the efficiency of undereground coal gasification. Journal of Geology, Geography and Geoecology, 27(2), 332-336. https://doi.org/10.15421/111857
- Pipatmanomai, S., Paterson, N., Dugwell, D.R., & Kandiyoti, R. (2003). Investigation of coal conversion under conditions simulating the raceway of a blast furnace using a pulsed air injection, wire-mesh reactor. Energy & Fuels, 17(2), 489-497. https://doi.org/10.1021/ef020175p
- Yin, H., Dai, H., & Liang, G. (2022). Inerting mechanism of magnesium carbonate hydroxide pentahydrate for coal dust deflagration under coal gasification. Powder Technology, (400), 117274. https://doi.org/10.1016/j.powtec.2022.117274
- Huang, W.G., Wang, Z.T., Duan, T.H., & Xin, L. (2021). Effect of oxygen and steam on gasification and power generation in industrial tests of underground coal gasification. Fuel, (289), 119855. https://doi.org/10.1016/j.fuel.2020.119855
- Prabu, V., & Jayanti, S. (2012). Laboratory scale studies on simulated underground coal gasification of high ash coals for carbon-neutral power generation. Energy, 46(1), 351-358. https://doi.org/10.1016/j.energy.2012.08.016
- Ma, W., Liu, S., Li, Z., Lv, J., & Yang, L. (2020). Release and transformation mechanisms of hazardous trace elements in the ash and slag during underground coal gasification. Fuel, (281), 118774. https://doi.org/10.1016/j.fuel.2020.118774
- Kumari, G., & Vairakannu, P. (2018). CO2-air based two stage gasification of low ash and high ash Indian coals in the context of underground coal gasification. Energy, (143), 822-832. https://doi.org/10.1016/j.energy.2017.11.027
- Yang, L. (2008). Coal properties and system operating parameters for underground coal gasification. Energy Sources, Part A, 30(6), 516-528. https://doi.org/10.1080/15567030600817142
- Bartel, L.C., Beckham, L.W., & Reed, R.P. (1976). Instrumentation results from an in-situ coal gasification experiment. SPE Annual Technical Conference and Exhibition, SPE-6151. https://doi.org/10.2118/6151-MS
- Yang, L.H. (2008). Model test on underground coal gasification (UCG) with low-pressure fire seepage push-through. Part I: Test conditions and air fire seepage. Energy Sources, Part A, 30(17), 1587-1594. https://doi.org/10.1080/15567030802112102
- Bokun, I.A. (2007). Pulsiruyushchee dute v teplotekhnologiyakh podzemnoy gazifikatsii burykh ugley. Energetika, (1). 61-64.
- Jowkar, A., Sereshki, F., & Najafi, M. (2018). A new model for evaluation of cavity shape and volume during Underground Coal Gasification process. Energy, (148), 756-765. https://doi.org/10.1016/j.energy.2018.01.188
- Camp, D.W. (2018). Underground coal gasification research and development in the United States. Underground Coal Gasification and Combustion, 59-127. https://doi.org/10.1016/B978-0-08-100313-8.00004-9
- Jiang, L., Chen, Z., & Ali, S.F. (2017). Modelling of reverse combustion linking in underground coal gasification. Fuel, (207), 302-311. https://doi.org/10.1016/j.fuel.2017.06.097
- Debelle, B., Malmendier, M., Mostade, M., & Pirard, J.P. (1992). Modelling of flow at Thulin underground coal gasification experiments. Fuel, 71(1), 95-104. https://doi.org/10.1016/0016-2361(92)90198-W
- Kačur, J., Laciak, M., Durdán, M., & Flegner, P. (2023). Investigation of underground coal gasification in laboratory conditions: a review of recent research. Energies, 16(17), 6250. https://doi.org/10.3390/en16176250
- Cui, Y., Liang, J., Wang, Z., Zhang, X., Fan, C., Liang, D., & Wang, X. (2014). Forward and reverse combustion gasification of coal with production of high-quality syngas in a simulated pilot system for in situ gasification. Applied Energy, (131), 9-19. https://doi.org/10.1016/j.apenergy.2014.06.001
- Perkins, G., du Toit, E., Cochrane, G., & Bollaert, G. (2016). Overview of underground coal gasification operations at Chinchilla, Australia. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38(24), 3639-3646. https://doi.org/10.1080/15567036.2016.1188184
- Laciak, M., Kostúr, K., Durdán, M., Kačur, J., & Flegner, P. (2016). The analysis of the underground coal gasification in experimental equipment. Energy, (114), 332-343. https://doi.org/10.1016/j.energy.2016.08.004
- Xin, L., Wang, Z.T., Wang, G., Nie, W., Zhou, G., Cheng, W.M., & Xie, J. (2017). Technological aspects for underground coal gasification in steeply inclined thin coal seams at Zhongliangshan coal mine in China. Fuel, (191), 486-494. https://doi.org/10.1016/j.fuel.2016.11.102
- Saik, P.B., Falshtynskyi, V.S., Lozynskyi, V.H., Cabana, E.C., Demydov, M.S., & Dychkovskyi, R.O. (2020). Efficiency of underground gas generator in consideration of the reverse mode. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 39-46. https://doi.org/10.33271/nvngu/2020-4/039
- Saik, P., & Berdnyk, M. (2022). Mathematical model and methods for solving heat-transfer problem during underground coal gasification. Mining of Mineral Deposits, 16(2), 87-94. https://doi.org/10.33271/mining16.02.087
- Xin, J., Liu, L., Jiang, Q., Yang, P., Qu, H., & Xie, G. (2022). Early-age hydration characteristics of modified coal gasification slag-cement-aeolian sand paste backfill. Construction and Building Materials, (322), 125936. https://doi.org/10.1016/j.conbuildmat.2021.125936
- Dubiński, J., & Turek, M. (2016). Mining problems of underground coal gasification-reflections based on experience gained in experiment conducted in KHW SA Wieczorek Coal Mine. Mining Science, (23), 7-20. https://doi.org/10.5277/msc162301
- Kuzmenko, O., Dychkovskyi, R., Petlovanyi, M., Buketov, V., Howaniec, N., & Smolinski, A. (2023). Mechanism of interaction of backfill mixtures with natural rock fractures within the zone of their intense manifestation while developing steep ore deposits. Sustainability, 15(6), 4889. https://doi.org/10.3390/su15064889
- Pomykała, R. (2013). Properties of waste from coal gasification in entrained flow reactors in the aspect of their use in mining technology. Archives of Mining Sciences, 58(2), 375-393. https://doi.org/10.2478/amsc-2013-0026
- Zhao, X., Yang, K., He, X., Wei, Z., & Zhang, J. (2022). Study on proportioning experiment and performance of solid waste for underground backfilling. Materials Today Communications, (32), 103863. https://doi.org/10.1016/j.mtcomm.2022.103863
- Najafi, M., Jalali, S. M.E., & KhaloKakaie, R. (2014). Thermal-mechanical-numerical analysis of stress distribution in the vicinity of underground coal gasification (UCG) panels. International Journal of Coal Geology, (134), 1-16. https://doi.org/10.1016/j.coal.2014.09.014
- Zhao, Y., Dong, Z., Chen, Y., Chen, H., Xue, J., Chen, S., & Peng, Y. (2023). Stress-Dependent Characteristics of Coal Permeability in Gasification Zone of Underground Coal Gasification. US Rock Mechanics/Geomechanics Symposium, RMA-2023-0389. https://doi.org/10.56952/ARMA-2023-0389
- Laciak, M., Kačur, J., & Durdán, M. (2022). Modeling and control of energy conversion during underground coal gasification process. Energies, 15(7), 2494. https://doi.org/10.3390/en15072494
- Li, Z., Wang, L., Ren, B., & Ding, K. (2022). The layout of the combustion cavity and the fracture evolution of the overlying rock during the process of underground coal gasification. Geofluids, 264959. https://doi.org/10.1155/2022/9264959
- Luo, J.A., & He, J. (2022). Mechanical characteristics of sandstone under high temperature and cyclic loading in underground coal gasification. Minerals, 12(10), 1313. https://doi.org/10.3390/min12101313
- Sirdesai, N.N., Singh, R., Singh, T.N., & Ranjith, P.G. (2015). Numerical and experimental study of strata behavior and land subsidence in an underground coal gasification project. Proceedings of the International Association of Hydrological Sciences, 372(372), 455-462. https://doi.org/10.5194/piahs-372-455-2015
- Shahbazi, M.R., Najafi, M., Fatehi Marji, M., & Abdollahipour, A. (2022). Cavity growth in underground coal gasification method by considering cleat length and inclination of coal with elasto-brittle behavior. Journal of Mining and Environment, 13(2), 607-625. https://doi.org/10.22044/jme.2022.11906.2183
- Li, H., Zha, J., Guo, G., Zhang, H., Xu, Y., & Niu, Y. (2022). Evaluation method of surface subsidence degree for underground coal gasification without shaft. Combustion Science and Technology, 194(3), 608-621. https://doi.org/10.1080/00102202.2020.1776706
- Dong, Z., Yi, H., Zhao, Y., Wang, X., Chu, T., Xue, J., & Chen, H. (2022). Investigation of the evolution of stratum fracture during the cavity expansion of underground coal gasification. Energies, 15(19), 7373. https://doi.org/10.3390/en15197373
- Falshtynskyi, V.S. (2009). Udoskonalennia tekhnolohii sverdlovynnoi pidzemnoi hazyfikatsii vuhillia. Dnipropetrovsk, Ukraina: NHU, 131 p.
- Gayko, G., & Zayev, V. (2011). Development of methods for utilization of thermal energy in the underground gasification of coal mining. Technical and Geoinformational Systems in Mining, 43-46. https://doi.org/10.1201/b11586-9
- Gayko, G., & Kasyanov, V. (2007). Utilizing thermal power potential of coal by underground burning (gasification) of thin coal layers. Technical, Technological and Economic Aspects of Thin-Seams Coal Mining, 97-101. https://doi.org/10.1201/noe0415436700.ch12
- Dychkovskyi, R.O. (2015). Forming the bilayer artificially created shell of georeactor in underground coal well gasification. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 37-42.
- Dychkovskyi, R.O. (2015). Determination of the rock subsidence spacing in the well underground coal gasification. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 30-36.
- Bondarenko, V.I., Buzylo, V.I., Falshtynskiy, V.S., & Dychkovskiy, R.O. (2007). Parameters of injection fill above an underground gas generator. Technical, Technological and Economic Aspects of Thin-Seams Coal Mining, 89-95. https://doi.org/10.1201/noe0415436700.ch11
- Bondarenko, V.I., Falshtynskiy, V.S., & Dychkovskiy, R.O. (2009). Synthetic stowing of rockmass at borehole underground coal gasification (BUCG). Deep Mining Challenges: International Mining Forum, 169-177. https://doi.org/10.1201/noe0415804288.ch18
- Jüntgen, H. (1983). Application of catalysts to coal gasification processes. Incentives and perspectives. Fuel, 62(2), 234-238. https://doi.org/10.1016/0016-2361(83)90206-5
- Mandapati, R.N., Daggupati, S., Mahajani, S.M., Aghalayam, P., Sapru, R.K., Sharma, R.K., & Ganesh, A. (2012). Experiments and kinetic modeling for CO2 gasification of Indian coal chars in the context of underground coal gasification. Industrial & Engineering Chemistry Research, 51(46), 15041-15052. https://doi.org/10.1021/ie3022434
- Yin, Z., Xu, H., Chen, Y., Zhao, T., & Wu, J. (2023). Experimental simulate on hydrogen production of different coals in underground coal gasification. International Journal of Hydrogen Energy, 48(19), 6975-6985. https://doi.org/10.1016/j.ijhydene.2022.03.205
- Svetkina, Y., Falshtyns’kyy, V., & Dychkovs’kyy, R. (2010). Features of selectivity process of borehole underground coal gasification. New Techniques and Technologies in Mining, 219-222. https://doi.org/10.1201/b11329-36
- Zhang, F., Xu, D., Wang, Y., Argyle, M.D., & Fan, M. (2015). CO2 gasification of Powder River Basin coal catalyzed by a cost-effective and environmentally friendly iron catalyst. Applied Energy, (145), 295-305. https://doi.org/10.1016/j.apenergy.2015.01.098
- Kumari, G., & Vairakannu, P. (2018). CO2-O2 dry reforming based underground coal gasification using low and high ash Indian coals. Fuel, (216), 301-312. https://doi.org/10.1016/j.fuel.2017.11.117
- Arnold, R.A., & Hill, J.M. (2019). Catalysts for gasification: A review. Sustainable Energy & Fuels, 3(3), 656-672. https://doi.org/10.1039/C8SE00614H
- Liu, H., Guo, W., & Liu, S. (2022). Comparative techno-economic performance analysis of underground coal gasification and surface coal gasification based coal-to-hydrogen process. Energy, (258), 125001. https://doi.org/10.1016/j.energy.2022.125001
- Dychkovskyi, R. (2013). Naukovi zasady syntezu tekhnolohii vydobuvannia vuhillia u slabometamorfizovanykh porodakh. Dnipropetrovsk, Ukraina: NMU, 352 p.
- Fisher, S.T. (1979). Processing of coal, oil sand and heavy oil in situ by electric and magnetic fields. Canadian Electrical Engineering Journal, 4(4), 15-18. https://doi.org/10.1109/CEEJ.1979.6593931
- Balanis, C.A. (1983). Electromagnetic techniques in the development of coal-derived energy sources – A review. Journal of Microwave Power, 18(1), 45-54. https://doi.org/10.1080/16070658.1983.11689309
- Selimefendigil, F., Öztop, H.F., & Abu-Hamdeh, N. (2016). Natural convection and entropy generation in nanofluid filled entrapped trapezoidal cavities under the influence of magnetic field. Entropy, 18(2), 43. https://doi.org/10.3390/e18020043
- He, X., Ma, T., Qiu, J., Sun, T., Zhao, Z., Zhou, Y., & Zhang, J. (2004). Mechanism of coal gasification in a steam medium under arc plasma conditions. Plasma Sources Science and Technology, 13(3), 446. https://doi.org/10.1088/0963-0252/13/3/011
- Liu, W., Niu, S., Tang, H., & Zhou, K. (2021). Pore structure evolution during lignite pyrolysis based on nuclear magnetic resonance. Case Studies in Thermal Engineering, (26), 101125. https://doi.org/10.1016/j.csite.2021.101125
- Selivanova, T., & Pechnikov, V. (2013). Thermo-chemical conversion of coal samples under high temperature. Global Geology, 16(3), 144-148.
- Lozynskyi, V., Falshtynskyi, V., Saik, P., Dychkovskyi, R., Zhautikov, B., Cabana, E. (2022). Use of magnetic fields for intensification of coal gasification process. Rudarsko-Geološko-Naftni Zbornik, 37(5), 61-74. https://doi.org/10.17794/rgn.2022.5.6
- Falshtynskyy, V., Dychkovskyy, R., Lozynskyy, V., & Saik, P. (2012). New method for justification the technological parameters of coal gasification in the test setting. Geomechanical Processes During Underground Mining, 201-208. https://doi.org/10.1201/b13157-35
- Kapusta, K., Wiatowski, M., Thomas, H.R., Zagorščak, R., Sadasivam, S., Masum, S., & Stańczyk, K. (2023). Experimental simulations of methane-oriented underground coal gasification using hydrogen – The effect of coal rank and gasification pressure on the hydrogasification process. International Journal of Hydrogen Energy, 48(3), 921-932. https://doi.org/10.1016/j.ijhydene.2022.10.012
- Kahraman, U., & Dincer, I. (2023). Development and assessment of an integrated underground gasification system for cleaner outputs. Energy, (285), 128676. https://doi.org/10.1016/j.energy.2023.128676
- Li, G., Duan, T., Li, X., Wang, Z., & Zhang, P. (2022). Establishment and application of a two‐stage reaction equilibrium model for underground coal gasification. International Journal of Energy Research, 46(15), 22679-22689. https://doi.org/10.1002/er.8571
- Kačur, J., Laciak, M., Durdán, M., Flegner, P., & Frančáková, R. (2023). A review of research on advanced control methods for underground coal gasification processes. Energies, 16(8), 3458. https://doi.org/10.3390/en16083458
- Bazaluk, O., Lozynskyi, V., Falshtynskyi, V., Saik, P., Dychkovskyi, R., & Cabana, E. (2021). Experimental studies of the effect of design and technological solutions on the intensification of an underground coal gasification process. Energies, 14(14), 4369. https://doi.org/10.3390/en14144369
- Falshtyns’kyy, V., Dychkovs’kyy, R., Lozyns’kyy, V., & Saik, P. (2013). Justification of the gasification channel length in underground gas generator. Annual Scientific-Technical Collection – Mining of Mineral Deposits, 125-132. https://doi.org/10.1201/b16354-22
- Falshtynskyi, V., Dychkovskyi, R., Saik, P., & Lozynskyi, V. (2014). Some aspects of technological processes control of an in-situ gasifier during coal seam gasification. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining, 109-112. https://doi.org/10.1201/b17547-20
- Biswas, A.K., Wattanasrirote, W., Techato, K., Phoungthong, K., & Wae-Hayee, M. (2023). Selection criteria of coalfields for underground coal gasification (UCG). AIP Conference Proceedings, 2689(1), 0300004. https://doi.org/10.1063/5.0114576
- Huang, W.G., Zhang, S.W., Wang, G.Z., Huang, J., Lu, X., Wu, S.L., & Wang, Z.T. (2023). Modeling methodology for site selection evaluation of underground coal gasification based on combination weighting method with game theory. ACS Omega, 8(12), 11544-11555. https://doi.org/10.1021/acsomega.3c00626
- Ghasemi, M., Omrani, S., Mahmoodpour, S., & Zhou, T. (2022). Molecular dynamics simulation of hydrogen diffusion in water-saturated clay minerals; implications for Underground Hydrogen Storage (UHS). International Journal of Hydrogen Energy, 47(59), 24871-24885. https://doi.org/10.1016/j.ijhydene.2022.05.246
- Zhang, Z., Yang, X., Shang, X., & Yang, H. (2022). A thermal-hydrological-mechanical-chemical coupled mathematical model for underground coal gasification with random fractures. Mathematics, 10(16), 2835. https://doi.org/10.3390/math10162835
- Wiatowski, M., Kapusta, K., Strugała-Wilczek, A., Stańczyk, K., Castro-Muñiz, A., Suárez-García, F., & Paredes, J.I. (2023). Large-Scale experimental simulations of in situ coal gasification in terms of process efficiency and physicochemical properties of process by-products. Energies, 16(11), 4455. https://doi.org/10.3390/en16114455
- Zhou, H., Wu, C., Chen, H., Du, M., Wang, Z., & Jiang, X. (2022). Numerical simulation of the temperature distribution and evolution law of underground lignite gasification. ACS Omega, 7(8), 6885-6899. https://doi.org/10.1021/acsomega.1c06559
- An, N., Zagorščak, R., & Thomas, H.R. (2022). Transport of heat, moisture, and gaseous chemicals in hydro-mechanically altered strata surrounding the underground coal gasification reactor. International Journal of Coal Geology, (249), 103879. https://doi.org/10.1016/j.coal.2021.103879
- Riasetiawan, M., Anggara, F., & Syahra, V. (2022). Implementing the calculations and characterization of underground coal gasification using data analytic method. Civil Engineering Journal, (7), 171-181. https://doi.org/10.28991/CEJ-SP2021-07-012
- Zagorščak, R., Metcalfe, R., Limer, L., Thomas, H., An, N., Bond, A., & Watson, S. (2022). Risk assessment methodology for Underground Coal Gasification technology. Journal of Cleaner Production, (370), 133493. https://doi.org/10.1016/j.jclepro.2022.133493
- Anggara, F., Riasetiawan, M., Assamarqandi, F.R., Sartika, B.F., Rizaldi, I.J., Syahra, V., & Rahmat, S.B. (2022). Screening criteria of underground coal gasification (UCG): A case study from Mangunjaya Area, South Sumatra Basin, Indonesia. IOP Conference Series: Earth and Environmental Science, 1071(1), 012023. https://doi.org/10.1088/1755-1315/1071/1/012023
- Yang, L.H. (2008) A review of the factors influencing the physicochemical characteristics of underground coal gasification. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 30(11), 1038-1049. https://doi.org/10.1080/15567030601082803