Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Assessing a natural field of rock mass stress by means of in-situ measurements within Vostochnaya Sary-Oba deposit in Kazakhstan

Assem Akpanbayeva1, Tuyak Issabekv1

1Abylkas Saginov Karaganda Technical University, Karaganda, Kazakhstan


Min. miner. depos. 2023, 17(3):56-66


https://doi.org/10.33271/mining17.03.056

Full text (PDF)


      ABSTRACT

      Purpose is to assess a natural field of rock mass stress within Vostochnaya Sary-Oba deposit using in-situ measurements. It will help identify stress distribution as well as high-stress areas that may be dangerous for mining operations.

      Methods. The research has applied a technique of well hydraulic fracturing to study parameters of the initial stress field within the deposit. For the purpose, two metering points in two measuring (horizontal and vertical) wells were used. Hydraulic fracturing has been tested at each installation location.

      Findings. The in-situ measurement results have helped obtain quantitative parameters of stress-strain state of the rock mass. It has been understood that the available tectonic disturbances may result from the shape of structural folds as well as from tectonic fissility. Operating azimuth of the maximum horizontal stress within the points coincides, it is equal to 70° ± 10.

      Originality is the use of a new approach to assess the stress rock mass state within Vostochnaya Sary-Oba deposit while applying in-situ measurements and well hydraulic fracturing. The abovementioned favours more accurate and reliable assessment of rock stress state at the field being quite important for mining safety and for the development of the efficient supporting procedures and ore extraction procedures.

      Practical implications. The research results are applicable to adapt project documents for the deposit mining, a supporting technique selection, and ore extracting. Moreover, they will help make the substantiated choice of a structure and geotechnical parameters taking into consideration safety of operations as well as quality of ore mining. In addition, the results help develop measures to prevent rock mass outburst and fall in mine workings.

      Keywords: rocks, ore, rock stability, mine working support, outburst, rock mass fissility


      REFERENCES

  1. Atakhanova, Z., & Azhibay, S. (2023). Assessing economic sustainability of mining in Kazakhstan. Mineral Economics, (233), 1-13. https://doi.org/10.1007/s13563-023-00387-x
  2. Kirsanov, A.K., Volkov, E.P., Kurchin, G.S., Shkaruba, N.A., Nafikov, R.Z., & Teshaev, U.R. (2022). The Central Asian states’ role in the world mining industry. Journal of Degraded & Mining Lands Management, 9(3), 3431-3443. https://doi.org/10.15243/jdmlm.2022.093.3431
  3. Moldabayeva, G., & Abileva, S. (2021). Study and determination of regularities in variability of oil rheological properties to enhance oil recovery. Periodicals of Engineering and Natural Sciences (PEN), 9(4), 44-60. https://doi.org/10.21533/pen.v9i4.2299
  4. Zhiyenbayev, Y., Sakhiyeva, K., & Ha, H. (2022). Identifying future employment trends and skills in the mining sector in Kazakhstan. Korean Journal of Futures Studies, 7(1), 133-186.
  5. Moldabayeva, G.Z., Suleimenova, R.T., Akhmetov, S.M., Shayakhmetova, Z.B., & Suyungariyev, G.E. (2021). The process of monitoring the current condition of oil recovery at the production fields in Western Kazakhstan. Journal of Applied Engineering Science, 19(4), 1099-1107. https://doi.org/10.5937/jaes0-30840
  6. Motovilov, I.Y., Telkov, S.A., Barmenshinova, M.B., & Nurmanova, A.N. (2019). Examination of the preliminary gravity dressing influence on the Shalkiya deposit complex ore. Non-Ferrous Metals, 47(2), 3-8. https://doi.org/10.17580/nfm.2019.02.01
  7. Telkov, Sh.A., Motovilov, I.Tu., Barmenshinova, M.B., & Abisheva, Z.S. (2021). Study of gravity-flotation concentration of lead-zinc ore at the Shalkiya deposit. Obogashchenie Rud, (6), 9-15.
  8. Yessengaziyev, A., Mukhanova, A., Tussupbayev, N., & Barmenshinova, M. (2022). The usage of basic and ultramicroheterogenic flotation reagents in the processing of technogenic copper-containing raw materials. Journal of Chemical Technology and Metallurgy, 57(6), 1235-1242.
  9. Sharapatov, A., Shayahmet, M., & Arshamov, Y.К. (2016). About modern technology field geophysical research areas sulfide mineralization in western Kazakhstan. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 1(415), 102-107.
  10. Arshamov, Y., Seitmuratova, E., & Baratov, R. (2015). Perspectives of porphyry copper mineralizations in Zhongar-Balkhash fold system (Kazakhstan). International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, 345-350.
  11. Motovilov, I.Y., Telkov, S.A., Barmenshinova, M.B., & Nurmanova, A.N. (2019). Examination of the preliminary gravity dressing influence on the Shalkiya deposit complex ore. Non-Ferrous Metals, 47(2), 3-8. https://doi.org/10.17580/nfm.2019.02.01
  12. Tolovkhan, B., Demin, V., Amanzholov, Zh., Smagulova, A., Tanekeye-va, G., Zairov, Sh., Krukovskyi, O., & Cabana, E. (2022). Substantiating the rock mass control parameters based on the geomechanical model of the Severny Katpar deposit, Kazakhstan. Mining of Mineral Deposits, 16(3), 123-133. https://doi.org/10.33271/mining16.03.123
  13. Kononenko, M., & Khomenko, O. (2010). Technology of support of workings near to extraction chambers. New Techniques and Technologies in Mining, 193-197. https://doi.org/10.1201/b11329-31
  14. Zubov, V.P. (2018). Primenyaemye tekhnologii i aktualnye problemy resursosberezheniya pri podzemnoy razrabotke plastovykh mestorozhdeniy poleznykh iskopaemykh. Gornyy zhurnal, (6), 77-83.
  15. Kicki, J., & Dyczko, A. (2010). The concept of automation and monitoring of the production process in an underground mine. New Techniques and Technologies in Mining, 245-253. https://doi.org/10.1201/b11329-41
  16. Volkov, A.P., Buktukov, N.S., & Kuanyshbaiuly, S. (2022). Safe and effective methods for mining thin tilt and steeply dipping deposits with ore drawing via mud flow. Gornyi Zhurnal, (4), 86-91. https://doi.org/10.17580/gzh.2022.04.13
  17. Khomenko, O.Ye., Sudakov, A.K., Malanchuk, Z.R., & Malanchuk, Ye.Z. (2017). Principles of rock pressure energy usage during underground mining of deposits. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 34-43.
  18. Biryukova, A.A., Dzhienalyev, T.D., & Panichkin, A.V. (2021). Ceramic proppants for hydraulic fracturing. IOP Conference Series: Materials Science and Engineering, 1040(1), 012008. https://doi.org/10.1088/1757-899X/1040/1/012008
  19. Pysmennyi, S., Fedko, M., Shvaher, N., & Chukharev, S. (2020). Mining of rich iron ore deposits of complex structure under the conditions of rock pressure development. E3S Web of Conferences, (201), 01022. https://doi.org/10.1051/e3sconf/202020101022
  20. Ivadilinova, D.T., Issabek, T.K., Takhanov, D.K., & Yeskenova, G.B. (2023). Predicting underground mining impact on the earth’s surface. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (1), 32-37. https://doi.org/10.33271/nvngu/2023-1/032
  21. Xu, J., Kang, Y., Wang, X., Feng, G., & Wang, Z. (2019). Dynamic characteristics and safety criterion of deep rock mine opening under blast loading. International Journal of Rock Mechanics and Mining Sciences, (119), 156-167.https://doi.org/10.1016/j.ijrmms.2019.04.015
  22. Cai, M. (2019). Rock support in strainburst-prone ground. International Journal of Mining Science and Technology, 29(4), 529-534.https://doi.org/10.1016/j.ijmst.2019.06.008
  23. Pysmenniy, S., Shvager, N., Shepel, O., Kovbyk, K., & Dolgikh, O. (2020). Development of resource-saving technology when mining ore bodies by blocks under rock pressure. E3S Web of Conferences, (166), 02006.https://doi.org/10.1051/e3sconf/202016602006
  24. Gao, M., Xie, J., Gao, Y., Wang, W., Li, C., Yang, B., & Xie, H. (2021). Mechanical behavior of coal under different mining rates: a case study from laboratory experiments to field testing. International Journal of Mining Science and Technology, 31(5), 825-841. https://doi.org/10.1016/j.ijmst.2021.06.007
  25. Wang, Y., He, M., Yang, J., Wang, Q., Liu, J., Tian, X., & Gao, Y. (2020). Case study on pressure-relief mining technology without advance tunneling and coal pillars in longwall mining. Tunnelling and Underground Space Technology, (97), 103236.https://doi.org/10.1016/j.tust.2019.103236
  26. Sasaoka, T., Mao, P., Shimada, H., Hamanaka, A., & Oya, J. (2020). Numerical analysis of longwall gate-entry stability under weak geological condition: A case study of an Indonesian coal mine. Energies, 13(18), 4710.https://doi.org/10.3390/en13184710
  27. Pysmennyi, S., Peremetchyk, A., Chukharev, S., Fedorenko, S., Anastasov, D., & Tomiczek, K. (2022). The mining and geometrical methodology for estimating of mineral deposits. IOP Conference Series: Earth and Environmental Science, 1049(1), 012029.https://doi.org/10.1088/1755-1315/1049/1/012029
  28. Kuzmenko, O., Petlyovanyy, M., & Heylo, A. (2014). Application of fine-grained binding materials in technology of hardening backfill construction. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining, 465-469.https://doi.org/10.1201/b17547-79
  29. Krietsch, H., Gischig, V., Evans, K., Doetsch, J., Dutler, N.O., Valley, B., & Amann, F. (2019). Stress measurements for an in situ stimulation experiment in crystalline rock: Integration of induced seismicity, stress relief and hydraulic methods. Rock Mechanics and Rock Engineering, (52), 517-542. https://doi.org/10.1007/s00603-018-1597-8
  30. Rahimi, B., Sharifzadeh, M., & Feng, X. T. (2020). Ground behaviour analysis, support system design and construction strategies in deep hard rock mining – Justified in Western Australian’s mines. Journal of Rock Mechanics and Geotechnical Engineering, 12(1), 1-20. https://doi.org/10.1016/j.jrmge.2019.01.006
  31. Wei, M., Dai, F., Liu, Y., Li, A., & Yan, Z. (2021). Influences of loading method and notch type on rock fracture toughness measurements: from the perspectives of T-stress and fracture process zone. Rock Mechanics and Rock Engineering, 5(4), 4965-4986. https://doi.org/10.1007/s00603-021-02541-9
  32. Usenbekov, M.S., Isabek, T.K., Polchin, A.I., & Zhumabekova, A.E. (2022). Methane emission dynamics in mining in zones of geological faults. Mining Informational and Analytical Bulletin, (12), 141-151.https://doi.org/10.25018/0236_1493_2022_12_0_141
  33. Kamiński, P., Dyczko, A., & Prostański, D. (2021). Virtual simulations of a new construction of the artificial shaft bottom (shaft safety platform) for use in mine shafts. Energies, 14(8), 2110. https://doi.org/10.3390/en14082110
  34. Wang, J., Apel, D.B., Dyczko, A., Walentek, A., Prusek, S., Xu, H., & Wei, C. (2022). Analysis of the damage mechanism of strainbursts by a global-local modeling approach. Journal of Rock Mechanics and Geotechnical Engineering, 14(6), 1671-1696. https://doi.org/10.1016/j.jrmge.2022.01.009
  35. Portnov, V., Kamarov, R., Mausymbaeva, A., & Yurov, V. (2014). Link of specific electric resistance with qualitative and strength characteristics of ores. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining, 65-70. https://doi.org/10.1201/b17547-13
  36. Tolovkhan, B., Smagulova, A., Khuangan, N., Asainov, S., Issagulov, S., Kaumetova, D., Khussan, B., & Sandibekov, M. (2023). Studying rock mass jointing to provide bench stability while Northern Katpar deposit developing in Kazakhstan. Mining of Mineral Deposits, 17(2), 99-111. https://doi.org/10.33271/mining17.02.099
  37. Isabek, T.K., Khuangan, N., Aitpayeva, A.R., & Shaimerdenova, R.T. (2020). Modeling the outburst state of an array with disjunctive disruption and mining using the finite element method. Ugol, (6), 55-61. https://doi.org/10.18796/0041-5790-2020-6-55-61
  38. Abdullayeva, A., Kalabayeva, A., Ivanov, A., Abdullayev, S., & Bakyt, G. (2022). Methods for identification of complex industrial control objects on their accelerating characteristics. Communications, 24(3), 239-246. https://doi.org/10.26552/com.C.2022.3.B239-B246
  39. Portnov, V.S., Yurov, V.M., & Maussymbayeva, A.D. (2016). Applied problems of thermodynamic approach to the analysis of geophysical information. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (1), 5-11.
  40. Bakyt, G.B., Seidemetova, Z.S., Abdullayev, S.S., Adilova, N.J., Kamzina, A.D., & Aikumbekov, M.N. (2020). Create a traffic control information space in the logistics environment. Journal of Advanced Research in Law and Economics, 11(2), 290-300. https://doi.org/10.14505/jarle.v11.2(48).03
  41. Wang, J., Chen, L., Su, R., & Zhao, X. (2018). The Beishan underground research laboratory for geological disposal of high-level radioactive waste in China: planning, site selection, site characterization and in situ tests. Journal of Rock Mechanics and Geotechnical Engineering, 10(3), 411-435. https://doi.org/10.1016/j.jrmge.2018.03.002
  42. Uzbekov, A.N., & Poleshko, N.N. (2022). Stress and strain state of the Kazakh shield from the earthquake focal mechanisms data. Geodynamics and Tectonophysics, 13(1), 057. https://doi.org/10.5800/gt-2022-13-1-0571
  43. Rudakov, M.L. (2020). Assessment of environmental and occupational safety in mining industry during underground coal mining. Journal of Environmental Management and Tourism, 11(03(43)), 579-588. https://doi.org/10.14505//jemt.v11.3(43).10
  44. Tetzlaff, E.J., Goggins, K.A., Pegoraro, A.L., Dorman, S.C., Pakalnis, V., & Eger, T.R. (2021). Safety culture: a retrospective analysis of occupational health and safety mining reports. Safety and Health at Work, 12(2), 201-208. https://doi.org/10.1016/j.shaw.2020.12.001
  45. Aidarbekov, Z.K., & Istekova, S.A. (2022). Classification of geophysical fields in the study of geological and structural features of the Zhezkazgan ore district. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 2(452), 33-48. https://doi.org/10.32014/2022.2518-170X.158
  46. Isabek, T., Bahtybaeva, A., Imashev, A., Nemova, N., & Sudarikov, A. (2014). Dilatancy at rock fracture. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining, 247-254. https://doi.org/10.1201/b17547
  47. Demin, V.F., Isabek, T.K., & Nemova, N.A. (2021). Study of deformation manifepoints in the excavation working floor when it is supported by roof bolting. IOP Conference Series: Earth and Environmental Science, 773(1), 012005. https://doi.org/10.1088/1755-1315/773/1/012005
  48. Rubtsova, E.V., & Skulkin, A.A. (2018). Sovremennoe osnashchenie izmeritelno-vychislitelnogo kompleksa “Gidrorazryv” i opyt ego primeneniya pri eksperimentalnom issledovanii deystvuyushchikh poley napryazheniy v solyanom massive. Problemy Nedropolzovaniya, 1(16), 52-58.
  49. Dyczko, A., Kamiński, P., Jarosz, J., Rak, Z., Jasiulek, D., & Sinka, T. (2021). Monitoring of roof bolting as an element of the project of the introduction of roof bolting in polish coal mines-case study. Energies, 15(1), 95. https://doi.org/10.3390/en15010095
  50. Dai, H., Li, P., Marzhan, N., Yan, Y., Yuan, C., Serik, T., & Seituly, K. (2022). Subsidence control method by inversely-inclined slicing and upward mining for ultra-thick steep seams. International Journal of Mining Science and Technology, 32(1), 103-112. https://doi.org/10.1016/j.ijmst.2021.10.003
  51. Aliev, S.B., Hodzhaev, R.R., Isabek, T.K., Demin, V.F., & Shontaev, A.Zh. (2020). Efficiency assessment of relief hole drilling in areas of high stresses to release methane from coal beds. Ugol, (11), 10-12.
  52. Isabek, T.K., Demin, V.F., Shontaev, D.S., Shontaev, A.D., & Aleksandrov, A.Yu. (2021). Effective technology for drilling advance methane drainage boreholes in outburst -prone coal beds. Ugol, (6), 11-14. https://doi.org/10.18796/0041-5790-2021-6-11-14
  53. Leontyev, A.V., Rubtsova, E.V., & Skulkin, A.A. (2018). Eksperimentalnoe opredelenie napryazheniy v okrestnosti podzemnykh vyrabotok na kaliynykh rudnikakh g. Solikamska. Geomekhanicheskie Polya i Protsessy, 95-105.
  54. Leontyev, A.V., Lekontsev, Yu.M., & Temiryaeva, O.A. (2015). Izmerenie napryazhennogo sostoyaniya massiva i upravlyaemoe vozdeystvie na ego mekhanicheskie svoystva. Sovremennye Problemy v Gornom Dele, 40-48.
  55. Skulkin, A.A., Nazarova, L.A., & Rubtsova, E.V. (2019). Opredelenie neravnokomponentnogo polya napryazheniy i reologicheskikh svoystv po dannym kavernometrii. Interekspo Geo-Sibir, 2(5), 27-31.
  56. Leontev, A.V., Lekontsev, Yu.M., & Temiryaeva, O.A. (2013). Novye tekhnicheskie resheniya pri sovershenstvovanii kompleksa oborudovaniya dlya izmeritelnogo i napravlennogo gidrorazryiva. Problemyi Bezopasnosti i Effektivnosti Osvoeniya Georesursov v Sovremennykh Usloviyakh, 283-290.
  57. Rubtsova, E.V., & Skulkin, A.A. (2017). O vypolnenii izmeritelnykh gidrorazryvov v solyanykh porodakh na podzemnykh rudnikakh Verkhnekamskogo mestorozhdeniya. Fundamentalnye i Prikladnye Voprosy Gornykh Nauk, 4(2), 270-274.
  58. Leontyev, A.V. (2015). Ob osobennostyakh metoda izmeritelnogo gidrorazryva pri kontrole napryazheniy v shakhtnykh usloviyakh. Interekspo Geo-Sibir, 2(3), 127-132.
  59. Rubtsova, E.V. (2009). Dvukhpakernyy zond dlya opredeleniya komponent napryazheniy v massive gornykh porod. Interekspo Geo-Sibir, (2), 219-222.
  60. Лицензия Creative Commons