Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Polygenic gold mineralization in quartz-pebble formations on the Takyr-Kaljir site of the Southern Altai, East Kazakhstan Region

Abdrakhman Begalinov1, Valeriy Peregudov2, Alexander Tretyakov3, Mels Shautenov1, Talgat Almenov1, Bakytbek Bektur4, Karina Sakhipova1

1Satbayev University, Almaty, Kazakhstan

2“RITZ NTK” LLP, Stepnogorsk, Kazakhstan

3“LLP “Institute of Geological Sciences named after K.I. Satpayev”, Almaty, Kazakhstan

4D.A. Kunayev Mining Institute, Almaty, Kazakhstan


Min. miner. depos. 2023, 17(3):32-41


https://doi.org/10.33271/mining17.03.032

Full text (PDF)


      ABSTRACT

      Purpose. The research purpose is to study the forms of gold occurrence in the Takyr graben alluvial-proluvial deposits in order to develop a low-waste resource-saving processing technology.

      Methods. At the first stage, in the course of field studies, the geological structure of the site is specified, samples are taken for mineralogical-technological analysis, which includes the following procedures: studying granulometric and mineral composition of detrital material; fractional gravitational beneficiation of the source material; fractional beneficiation of material pre-processed in the autogenous mill (AG mill); studying free (native) and bound gold in beneficiation products, their quantitative assessment. The samples are processed under the three-stage scheme using an autogenous mill for sample preparation.

      Findings. For the first time, the geological structure of the site has been specified with the identification of the deposits in the Turangi and Tuzkabak suites within its boundaries, as well as granulometric and petrographic composition of gold-bearing deposits, and the specifics of gold bearing. The detrital material, represented by quartz with a sharply subordinate amount of quartzite, quartz diorites and jasperoids, is practically identical in all fractions.

      Originality. For the first time, various types of gold mineralization have been identified in placer sands: clastogenic, newly-formed hypergene, newly-formed hydrothermal and residual. Fractional beneficiation makes it possible to estimate the gold content in each fraction and gravitational beneficiation products, as well as the ratio of free and bound native gold in different fractions. The largest amount of free native gold has been revealed in fractions of -0.25 + 0.1 mm (60%) and -0.074 + 0.044 mm (~40%). Gold is high-grade (96.5%) with an admixture of silver and iron. Together with gold, ilmenite, zircon, scheelite, native bismuth, as well as barite, galena, sphalerite, and dolomite have been identified.

      Practical implications. The research results make it possible to reassess the prospects of similar objects, to adjust the scheme and methodology for processing stream-sediment samples, to solve the issues of productive sand processing technology, as well as to improve the efficiency of geological exploration and eliminate the “underestimation” of gold deposits. The results obtained can be recommended for implementation by both domestic and foreign organizations specializing in the exploration and mining of gold deposits.

      Keywords: gold, placer, mineralogical-technological analysis, gravitational beneficiation, mineralogical composition


      REFERENCES

  1. Begalinov, A., Shautenov, M., Almenov, T., & Bektur, B. (2022). Leaching process intensification of gold-bearing raw materials. Mining of Mineral Deposits, 16(2), 42-48. https://doi.org/10.33271/mining16.02.042
  2. Mukhanova, A.A., Yessengaziyev, A.M., Barmenshinova, M.B., Samenova, N.O., Toilanbay, G.A., & Toktagulova, K.N. (2022). Improvement of the technology related gold-containing raw materials with the use of ultramicroheterogeneous flotoreagent. Metalurgija, 61(3-4), 777-780.
  3. Lutz, M.B. (2023). Orogenic gold in the Blue Mountains, Eastern Oregon, USA. Ore Geology Reviews, (154), 105310. https://doi.org/10.1016/j.oregeorev.2023.105310
  4. Begalinov, A., Shautenov, M., Medeuov, C., Almenov, T., & Bektur, B. (2021). Mechanochemical activation of the processing of gold-bearing sulfide raw materials. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 6(450), 46-52. https://doi.org/10.32014/2021.2518-170X.118
  5. Bochneva, A., Lalomov, A., & LeBarge, W. (2021). Placer mineral deposits of Arctic zone: Genetic prerequisites of formation and prospect of development of mineral resources. Ore Geology Reviews, 138(2), 104349. https://doi.org/10.1016/j.oregeorev.2021.104349
  6. Kadio, E., Coulibaly, Y., Allialy, M.E., Kouamelan, A.N., & Pothin, K. (2010). On the occurrence of gold mineralizations in southeastern Ivory Coast. Journal of African Earth Sciences, 57(5), 423-430.https://doi.org/10.1016/j.jafrearsci.2009.11.008
  7. Shilo, N.A. (2002). Teaching placers deposits. The pacer forming ore association and generation theory. Vladivostok, Rossiya: Dalnauka, 576 p.
  8. Singh, D., Mishra, B.R., Basu, S., & Rao, R.B. (2023). Process mineralogy for the development of a flowsheet to recover monazite from offshore placer deposit. Journal of The Institution of Engineers (India): Series D, 1-11.https://doi.org/10.1007/s40033-023-00487-6
  9. Nopeia, M., Imai, A., Takahashi, R., Yonezu, K., Manalo, P., Tindell, T., Sato, H., Jamal, D., & Agangi, A., (2023). Geology and geochemistry of gold mineralization at the Namicupo prospect, Mozambique Belt, northeastern Mozambique. Journal of Geochemical Exploration, (249), 107220.https://doi.org/10.1016/j.gexplo.2023.107220
  10. Araújo, P.P., & Gomes, C.L. (2014). Análise geométrica e cinemática das partículas de Au acolhidas em arsenopirite no corredor de cisalhamento de Argas-Cerquido-Serra de Arga (Minho). Comunicacoes Geologicas, (101), 243-246.
  11. Eldougdoug, A., Abdelazeem, M., Gobashy, M., Abdelhalim, A., & Said, S. (2023). Exploring gold mineralization in altered ultramafic rocks in south Abu Marawat, Eastern Desert, Egypt. Scientific Reports, 13(1), 7293. https://doi.org/10.1038/s41598-023-33947-w
  12. Taylor, R.D., Morgan, L.E., Jourdan, F., Monecke, T., Marsh, E.E., & Goldfarb, R.J. (2022). Late Jurassic-Early Cretaceous orogenic gold mineralization in the Klamath Mountains, California: Constraints from 40Ar/39Ar dating of hydrothermal muscovite. Ore Geology Reviews, (141), 104661. https://doi.org/10.1016/j.oregeorev.2021.104661
  13. Turysbekova, G.S., Meretukov, M.A., & Bektay, E.K. (2016). Zoloto: Novye syr’evye istochniki. Vtorichnaya metallurgiya i afinazh. Almaty, Kazakhstan: KazNITU im. K.I. Satpayeva, 359 s.
  14. Serdaliyev, Y., Iskakov, Y., Bakhramov, B., & Amanzholov, D. (2022). Research into the influence of the thin ore body occurrence elements and stope parameters on loss and dilution values. Mining of Mineral Deposits, 16(4), 56-64. https://doi.org/10.33271/mining16.04.056
  15. Yessengaziyev, A., Mukhanova, A., Tussupbayev, N., & Barmenshinova, M. (2022). The usage of basic and ultramicroheterogenic flotation reagents in the processing of technogenic copper-containing raw materials. Journal of Chemical Technology and Metallurgy, 57(6), 1235-1242.
  16. Serdaliyev, Y., & Iskakov, Y. (2022). Research into electro-hydraulic blasting impact on ore masses to intensify the heap leaching process. Mining of Mineral Deposits, 16(1), 52-57. https://doi.org/10.33271/mining16.01.052
  17. Gornostayev, S.S., Crocket, J.H., Mochalov, A.G., & Laajoki, K.V.O. (1999). The platinum-group minerals of the Baimka placer deposits, Aluchin horst, Far East. Canadian Mineralogist, 37(5), 1117-1129.
  18. Baybatsha, A.B. (2014). Modeli mestorozhdeniy blagorodnykh metallov. Almaty, Kazakhstan: KazNTU, 452 s.
  19. Begalinov, A., Shautenov, M., Almenov, T., Bektur, B., & Zhanakova, R. (2019). Prospects for the effective use of reagents based on sulfur compounds in the technology of extracting gold from resistant types of gold ore. Journal of Advanced Research in Dynamical and Control Systems, 11(8), 1791-1796.
  20. Tretyakov, A.V. (2009). Formirovaniye, zakonomernosti razmeshcheniya i perspektivy rossypnoy zolotonosnosti Vostoka Kazakhstana. Almaty, Kazakhstan: KazNTU, 290 s.
  21. Begalinov, A.B., Tretyakov, A.V., & Begalinov A.A. (2005). Perspektivy vyyavleniya bolsheobemnykh rossypey zolota v Kazakhstane. Izvestiya NAN RK. Seriya Geologii, (6), 32-43.
  22. Fields, S. (2001). Tarnishing the earth: gold mining’s dirty secret. Environmental Health Perspectives, 109(10), A474-A481.
  23. Winde, F., Wade, P., & Van der Walt, I.J. (2004). Gold tailings as a source of waterborne uranium contamination of streams – the Koekemoerspruit (Klerksdorp goldfield, South Africa) as a case study-part I of III: Uranium migration along the aqueous pathway. Water Sa, 30(2), 219-225.
  24. Kissin, A.Yu., Pritchin, M.E., & Ozornin, D.A. (2022). Geological and structural position of the Svetlinsky gold deposit (Southern Urals). Journal of Mining Institute, 255(3), 369-376. https://doi.org/10.31897/PMI.2022.46
  25. Waku, Y.M., von der Heyden, B.P., Lawrence, D., Bampata, T., Ndongani, F.L., & Mwandale, E. (2023). A paleoplacer component to the gold hosted in meta-conglomeratic units of the Neoarchaean Moto Greenstone Belt, DRC. Ore Geology Reviews, (157), 105477. https://doi.org/10.1016/j.oregeorev.2023.105477
  26. Kurguzkin, E.V., & Tretyakov, A.V. (2021). Zoloto-serebronosnye konglomeraty Yuzhno-Altayskogo rayo-na (Vostochnyy Kazakhstan). Geologiya i Okhrana Nedr, 2(79), 56-61.
  27. Nahan, G., Bijaksana, S., Suryanata, P.B., & Ibrahim, K. (2023). Geochemical and magnetic characteristics of placer gold deposits from Central Kalimantan, Indonesia. Rudarsko-Geološko-Naftni Zbornik, 38(2), 99-107. https://doi.org/10.17794/rgn.2023.2.7
  28. Лицензия Creative Commons