Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Studying the properties of ash and slag waste for use in the manufacture of construction products

Marzhan Nurpeisova1, Zatkali Estemesov2, Syrym Gabbasov3, Ainash Ashimova1, Aiman Bek1

1Satbayev University, Almaty, Kazakhstan

2Central Laboratory for Certification of Building Materials, Almaty, Kazakhstan

3Kazakh Agrarian Research Technical University, Astana, Kazakhstan


Min. miner. depos. 2023, 17(3):102-109


https://doi.org/10.33271/mining17.03.102

Full text (PDF)


      ABSTRACT

      Purpose. The research purpose is to study the physical-chemical properties of ash and slag waste generated during the coal combustion at the Ekibastuz field in Kazakhstan, to determine the possibility of using waste as a secondary resource to reduce the negative human impact on the environment.

      Methods. The research uses the methods of X-ray phase and differential thermal analysis, as well as chemical analysis. The X-ray phase analysis makes it possible to determine the phase composition and structure of ash and slag wastes, while differential thermal analysis is used to study their behavior with temperature changes. A chemical analysis is performed to determine the composition of ash and slag.

      Findings. The chemical and granulometric composition of ash and slag waste from the Ekibastuz field coal combustion has been determined. Analysis of the ash chemical composition showed that its main components are silicon and aluminum oxides, as well as a significant amount of iron oxide. The results obtained confirm the possibility of using ash and slag waste as a secondary raw material to reduce the negative impact on the environment.

      Originality. It has been revealed that the thermal conductivity, ultimate strength and water-absorption of ceramic brick samples depend on the amount of ash added and the firing temperature. The possibility of obtaining building materials with minimum cement content has also been substantiated, which is a new and promising approach, given the high cost of cement as the main building material.

      Practical implications. The practical value of the research is in solving environmental problems associated with the use of ash and slag waste. Using these wastes as a secondary raw material, it is possible to reduce the anthropogenic burden on the environment, as well as the volume of ash dumps. In addition, vacant land previously occupied by ash and slag mixtures can be used for economic purposes.

      Keywords: coal combustion, ash and slag dumps, physical-chemical properties, secondary raw materials, building materials


      REFERENCES

  1. Dorzheyeva, E., Kanayeva, Z., & Atasoy, E. (2020). Technological features of the use of ash and slag waste for high quality asphalt coating in the Almaty region of the republic of Kazakhstan. Journal of International Social Research, 13(69), 306-311. https://doi.org/10.17719/jisr.2020.3960
  2. Askarova, A.S., Bolegenova, S.A., Maximov, V.Y., Bekmukhamet, A., Beketayeva, M.T., & Gabitova, Z.K. (2015). Computational method for investigation of solid fuel combustion in combustion chambers of a heat power plant. High Temperature, (53), 751-757. https://doi.org/10.1134/S0018151X15040021
  3. Lewińska, P., & Dyczko, A. (2016). Thermal digital terrain model of a coal spoil tip – A way of improving monitoring and early diagnostics of potential spontaneous combustion areas. Journal of Ecological Engineering, 17(4), 170-179. https://doi.org/10.12911/22998993/64605
  4. Wang, J., Apel, D. B., Dyczko, A., Walentek, A., Prusek, S., Xu, H., & Wei, C. (2022). Analysis of the damage mechanism of strainbursts by a global-local modeling approach. Journal of Rock Mechanics and Geotechnical Engineering, 14(6), 1671-1696. https://doi.org/10.1016/j.jrmge.2022.01.009
  5. Fedorov, S., Kieush, L., Koveria, A., Boichenko, S., Sybir, A., Hubynskyi, M., & Foris, S. (2020). Thermal treatment of charcoal for synthesis of high-purity carbon materials. Petroleum and Coal, 62(3), 823-829.
  6. Zhautikov, F.B., Isagulov, A.Z., Zhautikov, B.A., Romanov, V.I., & Babenko, A.A. (2019). Development and implementation of a device for the separation of metal and slag during tundish filling. Metallurgist, 63(7-8), 672-674. https://doi.org/10.1007/s11015-019-00874-z
  7. Tafti, M.D., Ardejani, F.D., Marji, M.F., & Shiri, Y. (2021). Simulation of groundwater contamination by leakage from waste-filled mine. Rudarsko-Geološko-Naftni Zbornik, 36(5), 49-55.https://doi.org/10.17794/rgn.2021.5.5
  8. Pavlychenko, A., & Kovalenko, A. (2013). The investigation of rock dumps influence to the levels of heavy metals contamination of soil. Annual Scientific-Technical Collection – Mining of Mineral Deposits 2013, 237-238. https://doi.org/10.1201/b16354-43
  9. Mukhametkhan, Ye., Mukhametkhan, M., Zhabalova, G.G., Tleugabulov, S.M., Kovalev, D.A., & Koishina, G.M. (2023). A review of experiments with the aim of eliminating high amounts of phosphorus in the composition of Lisakovsk concentrate. Engineering Journal of Satbayev University, 145(1), 13–18. https://doi.org/10.51301/ejsu.2023.i1.02
  10. Utepov, E.B., Omirbai, R.S., Suleev, D.K., Nurgaliev, A.K., & Ibraeva, G.M. (2015). Developing Metallic Damping Materials. Metallurgist, 58(11-12), 1025-1031. https://doi.org/10.1007/s11015-015-0035-3
  11. Malanchuk, Z., Malanchuk, Y., Korniyenko, V., & Ignatyuk, I. (2017). Examining features of the process of heavy metals distribution in technogenic placers at hydraulic mining. Eastern-European Journal of Enterprise Technologies, 1(10(85)), 45-51. https://doi.org/10.15587/1729-4061.2017.92638
  12. Ermaғambet, B.T., Nurgaliev, N.U., Kasenova, Zh.M., Urlibay, R.K., Bolat, O.S., & Semenova, Ya.A. (2020). Tekhnologiya pererabotki zoloshlakovykh otkhodov Kazakhstana. Ugolnaya Teploenergetika v Kazakhstane: Problemy. Resheniya. Perspektivy Razvitiya, 82-86.
  13. Moldabayeva, G.Z., Suleimenova, R.T., Akhmetov, S.M., Shayakhmetova, Z.B., & Suyungariyev, G.E. (2021). The process of monitoring the current condition of oil recovery at the production fields in Western Kazakhstan. Journal of Applied Engineering Science, 19(4), 1099-1107. https://doi.org/10.5937/jaes0-30840
  14. Imansakipova, B. B., Baygurin, Z. D., Soltabaeva, S. T., Milev, I., & Miletenko, I. V. (2014). Causes of strain of buildings and structures in areas of abnormal stress and surveillance terrestrial laser scanners. Life Science Journal, 11(9s), 165-170.
  15. Fodor, M. M., Komorowski, M., & Turegeldinova, A. (2023). The relationship between firm attributes and attitudes towards diversity. Sustainability, 15(9), 7481.https://doi.org/10.3390/su15097481
  16. Shults, R., Soltabayeva, S., Seitkazina, G., Nukarbekova, Z., & Kucherenko, O. (2020). Geospatial Monitoring and Structural Mechanics Models: a Case Study of Sports Structures. Environmental Engineering. International Conference on Environmental Engineering, (11), 1-9. https://doi.org/10.3846/enviro.2020.685
  17. Yelubay, M., Massakbayeva, S., Aitkaliyeva, G., & Radelyuk, I. (2021). Processing of ash and slag waste. Engineering Journal of Satbayev University, 143(6), 79-84. https://doi.org/10.51301/vest.su.2021.i6.11
  18. Zvereva, E.R., Plotnikova, V.P., Burganova, F.I., & Zverev, L.O. (2019). Kompleksnyy metod utilizatsii zoloshlakovykh otkhodov teplovykh elektrostantsiy. Vestnik Kazanskogo Gosudarstvennogo Energeticheskogo Universiteta, 11(2(42)), 15-26.
  19. Saybulatov, S.Zh. (1985). Issledovanie vliyaniya sostava zol na fazovye prevrashcheniya v zolokeramike. Kompleksnoe Ispolzovanie Mineralnogo Syrya, (11), 78-81.
  20. Portnov, V.S., Yurov, V.M., & Maussymbayeva, A.D. (2016). Applied problems of thermodynamic approach to the analysis of geophysical information. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (1), 5-11.
  21. Dukenbaev, K.D. (2004). Energetika Kazakhstana. Usloviya i mekhanizmy ee ustoychivogo razvitiya. Almaty, Kazakhstan: Spravochnik, 604 s.
  22. Mingaleeva, G.R., Shamsutdinov, E.V., Afanasyeva, O.V., Fedotov, A.I., & Ermolaev, D.V. (2014). Sovremennye tendentsii pererabotki i ispolzovaniya zoloshlakovykh otkhodov TES i kotelnykh. Sovremennye Problemy Nauki i Obrazovaniya, (6), 225-225.
  23. Ovchinnikov, R.V., & Avakyan, A.G. (2014). Otsenka zoloshlakovykh otkhodov kak dobavki v beton. Novye Tekhnologii, (1), 100-107.
  24. Khalaf, H.A., Mohammed, N.A., & Federer, G. (2022). Evaluation of using waste pinecones as an eco-friendly additive to water-based mud. Rudarsko-Geološko-Naftni Zbornik, 37(2), 1-11. https://doi.org/10.17794/rgn.2022.2.1
  25. Baibatsha, A.B., Bekbotayeva, A.A., & Bekbotayev, A.T. (2015). Ore minerals of Carboniferous copper sediment-hosted Zhezkazgan deposit (Central Kazakhstan). International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, (1), 329-335.
  26. Samuseva, M.N., & Shishelova, T.I. (2009). Zoloshlakovye materialy – alternativa prirodnym materialam. Fundamentalnye Issledovaniya, (2), 75-76.
  27. Litovkin, S.V. (2015). Izuchenie zoloshlakovykh otkhodov dlya ikh ispolzovaniya v kachestve vtorichnykh resursov. Mezhdunarodnyy Zhurnal Prikladnykh i Fundamentalnykh Issledovaniy, (9-1), 23-27.
  28. Mukhanova, A.A., Yessengaziyev, A.M., Barmenshinova, M.B., Samenova, N.O., Toilanbay, G.A., & Toktagulova, K.N. (2022). Improvement of the technology related gold-containing raw materials with the use of ultramicroheterogeneous flotoreagent. Metalurgija, 61(3-4), 777-780.
  29. Begalinov, A., Shautenov, M., Medeuov, C., Almenov, T., & Bektur, B. (2021). Mechanochemical activation of the processing of gold-bearing sulfide raw materials. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 6(450), 46-52. https://doi.org/10.32014/2021.2518-170X.118
  30. Yang, D., Zhao, J., Suhail, S.A., Ahmad, W., Kamiński, P., Dyczko, A., Salmi, A., & Mohamed, A. (2022). Investigating the ultrasonic pulse velocity of concrete containing waste marble dust and its estimation using artificial intelligence. Materials, 15(12), 4311. https://doi.org/10.3390/ma15124311
  31. Motovilov, I.Y., Telkov, S.A., Barmenshinova, M.B., & Nurmanova, A.N. (2019). Examination of the preliminary gravity dressing influence on the Shalkiya deposit complex ore. Non-Ferrous Metals, 47(2), 3-8. https://doi.org/10.17580/nfm.2019.02.01
  32. Kurnosov, S., Ropyak, L., Velychkovych, A., Pryhorovska, T., & Vytvytskyi, V. (2021). Mechanical-insulating method of household and industrial waste utilization. New Technologies, Development and Applications, 431-441. https://doi.org/10.1007/978-3-030-75275-0_48
  33. Bekbassarov, S., Soltabaeva, S., Daurenbekova, A., & Ormanbekova, A. (2015). “Green” economy in mining. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 431-434. https://doi.org/10.1201/b19901-75
  34. Sensogut, C., & Ozdeniz, A.H. (2006). Bricks manufactured from colliery wastes: a case study. International Journal of Mining, Reclamation and Environment, 20(4), 267-271. https://doi.org/10.1080/17480930600589403
  35. Salguero, F., Grande, J.A., Valente, T., Garrido, R., De la Torre, M.L., Fortes, J.C., & Sánchez, A. (2014). Recycling of manganese gangue materials from waste-dumps in the Iberian Pyrite Belt-Application as filler for concrete production. Construction and Building Materials, (54), 363-368.https://doi.org/10.1016/j.conbuildmat.2013.12.082
  36. Shi, J., He, F., Ye, C., Hu, L., Xie, J., Yang, H., & Liu, X. (2017). Preparation and characterization of CaO-Al2O3-SiO2 glass-ceramics from molybdenum tailings. Materials Chemistry and Physics, (197), 57-64. https://doi.org/10.1016/j.jnoncrysol.2016.10.019
  37. Amralinova, B.B., Frolova, O.V., Mataibaeva, I.E., Agaliyeva, B.B., & Khromykh, S.V. (2021). Mineralization of rare metals in the lakes of East Kazakhstan. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 16-21. https://doi.org/10.33271/nvngu/2021-5/016
  38. Sharapatov, A., Shayahmet, M., & Arshamov, Y.К. (2016). About modern technology field geophysical research areas sulfide mineralization in western Kazakhstan. News of the National Academy of Sciences of the Republic of Kazakhstan, 1(415), 102-107.
  39. Amralinova, B., Agaliyeva, B., Frolova, O., Rysbekov, K., Mataibaeva, I., & Mizernaya, M. (2023) Rare-metal mineralization in salt lakes and the linkage with composition of granites: Evidence from Burabay Rock Mass (Eastern Kazakhstan). Water, 15(7), 1386. https://doi.org/10.3390/w15071386
  40. Malanchuk, Z., Korniyenko, V., Malanchuk, Y., Khrystyuk, A., & Kozyar, M. (2020). Identification of the process of hydromechanical extraction of amber. E3S Web of Conferences, (166), 02008. https://doi.org/10.1051/e3sconf/202016602008
  41. Arshamov, Y., Seitmuratova, E., & Baratov, R. (2015). Perspectives of porphyry copper mineralizations in Zhongar-Balkhash fold system (Kazakhstan). International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, 345-350.
  42. Kuldeyev, Е.I., Nurpeisova, М.B, Bеk, А.А., & Аshimova, А.А. (2022). Waste management is one of the key directions development of “green” economy in Kazakhstan. Mine Surveying and Subsurface Use, (6), 67-75. https://doi.org/10.56195/20793332_2022_6_67_73
  43. Rysbekov, K., Nurpeisova, M.B., & Bek, A.A. (2021). Use of enrichment waste for obtaining building materials. Innovative Development of Resource-Saving Technologies and Sustainable Use of Natural Resources, 16-19.
  44. Estemesov, Z.A., & Bekbasarov, Sh.Sh. (2010). Mini-zavod po proizvodstvu sukhikh stroitelnykh smesey. Marksheyderiya i Nedropolzovanie, (3), 38-40.
  45. Zhalgasuly, N., Estemesov, Z.A., Kogut, A.V., & Tugelbaev, A.B. (2019). Issledovanie zoloshlakovykh otkhodov TETs gornodobyvayushchego predpriyatiya kak syrya dlya polucheniya stroitelnykh materialov. Trudy Instituta Gornogo Dela, (89), 308-314.
  46. Potapov, S.O., Sviridova, M.N., Tanutrov, I.N., & Toloknov, D.A. (2016). Fiziko-khimicheskie svoystva zoly-unosa ot szhiganiya ekibastuzskikh ugley. Butlerovskie Soobshcheniya, 45(3), 36-39. https://doi.org/10.23946/2500-0764-2016-1-1-39-45
  47. Aitkazinova, S.K., Derbisov, K.N., Donenbayeva, N.S., Nurpeissova, M., & Levin, E. (2020). Preparing solutions based on industrial waste for fractured surface strengthening. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 5(443), 13-20.https://doi.org/10.32014/2019.2518-170X.118
  48. Shabanov, Ye.Zh., Kuatbay, Ye.K., Makhambetov, Ye.N., & Toleukadyr, R.Т. (2022). Thermodynamic and experimental simulation of the selting process of high-carbon ferrochrome with the use of high-ash coal “Saryadyr”. Engineering Journal of Satbayev University, 144(6), 11-17. https://doi.org/10.51301/ejsu.2022.i6.02
  49. Abyshev, B., Shlimas, D.I., Zdorovets, M.V., Arshamov, Y.K., & Kozlovskiy, A.L. (2022). Study of radiation resistance to helium swelling of Li2ZrO3/sub>/LiO and Li2ZrO3 ceramics. Crystals, 12(3), 384. https://doi.org/10.3390/cryst12030384
  50. Sobolev, V.V., & Usherenko, S.M. (2006). Shock-wave initiation of nuclear transmutation of chemical elements. Journal de Physique IV, (134), 977-982. https://doi.org/10.1051/jp4:2006134149
  51. Saakiyan, L.S., Efremov, A.P., Ropyak, L.Y., & Gorbatskii, A.V. (1987). A method of microelectrochemical investigations. Soviet Materials Science, 23(3), 267-269. https://doi.org/10.1007/BF00720884
  52. Chеrnаі, А.V., Sоbоlеv, V.V., Chеrnаі, V.А., Іlyushіn, M.А., & Dlugаshеk, А. (2003). Lаsеr іgnіtіоn оf еxplоsіvе cоmpоsіtіоns bаsеd оn dі-(3-hydrаzіnо-4-аmіnо-1,2,3-trіаzоlе)-cоppеr(ІІ) pеrchlоrаtе. Cоmbustіоn, Еxplоsіоn аnd Shоck Wаvеs, 39(3), 335-339. https://doi.org/10.1023/A:1023852505414
  53. Ashimova, A.A., Rysbekov, K.B., & Nurpeisova, M.B. (2022). Mnogotonnazhnye tekhogennye otkhody – vtorichnoe syrye. Materialy Mezhdunarodnoy Konferentsii k 110-letiyu O.A. Baykonurova, 153-157.
  54. Kuldeyev, E.I., Nurpeisova, М.B., Yestemesov, Z.А., & Аshimova, А.А. (2023). Industrial waste recycling – One of the key directions of business development. News of the National Academy of Sciences of the Republic of Kazakhstan, Series Chemistry and Technology, (3), 26-34. https://doi.org/10.32014/2023.2518-170X.309
  55. Лицензия Creative Commons