Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Impact by the operating and structural parameters of a screen on the technological parameters of vibratory basalt sieving

Zinovii Malanchuk1, Viktor Moshynskyi1, Yevhenii Malanchuk1, Valerii Korniyenko1, Olexandr Vasylchuk1, Vitalii Zaiets1, Myroslava Kucheruk1

1National University of Water and Environmental Engineering, Rivne, Ukraine


Min. miner. depos. 2023, 17(2):35-43


https://doi.org/10.33271/mining17.02.035

Full text (PDF)


      ABSTRACT

      Purpose is to identify a dependence of basalt raw material fine screening upon the operating and structural parameters of sieving equipment.

      Methods. The research results have been obtained relying upon comparative analysis of basalt raw material fine screening upon the operating and structural parameters of sieving equipment. In this regard, the analyzed grading efficiency characteristics were defined for three densities of basalt rock mass mined in open pits. They are γ = 1.4 g/сm3 for tuff; γ = 2.2 g/сm3 for lava-breccia; and γ = 2.6 g/сm3 for basalt. The rock mass components are extracted selectively and processed separately.

      Findings. Expediency of complex mining and processing of three basalt rock mass components (being tuff, lava-breccia, and basalt) as well as their selective treatment has been identified. Mathematical modelling has helped generate regression models of fine basalt raw material sieving upon the operating and structural parameters of a screen. The regression models as well as the represented calculation results are indicative of strong correlation between the efficiency of fine basalt raw material screening and the factors involved by the regression models (i.e. rock mass density; inclination angle of a disturbance force of a vibration exciter of a screen; inclination angle of a screen effector; mesh size; specific load on a screen; disturbance frequency of a screen drive; and a screen length).

      Originality. For the first time, dependencies of fine basalt raw material sieving efficiency upon the operating and structural parameters of a screen have been modelled mathematically. Based upon the multifactor experiment, ideas have been developed concerning the fine grading process; selection of boundaries of each parameter control; and determination of the efficiency as well as a law of changes in technological parameters while controlling them.

      Practical implications. Use of the findings will help make adequate solutions while selecting instrumental conditions of an operation schedule to prepare basalt raw material for its integrated processing.

      Keywords: basalt, tuff, lava-breccia, screen, sieving


      REFERENCES

  1. Okrusch, M., & Frimmel, H. (2020). The origin of basalt. Mineralogy, 341-346. https://doi.org/10.1007/978-3-662-57316-7_19
  2. Ramos, C., & Kautzmann, R.A. (2014). Preliminary study of volcanic rocks for stonemeal application. Environmental Nanotechnology, Monitoring & Management, 1-2. https://doi.org/10.1016/j.enmm.2014.03.002
  3. Zhenjiang, L., Chuanqing, Z., & Chunsheng, Z. (2019). Deformation and failure characteristics and fracture evolution of cryptocrystalline basalt. Journal of Rock Mechanics and Geotechnical Engineering, 11(5), 990-1003. https://doi.org/10.1016/j.jrmge.2019.04.005
  4. Pivnyak, G., Bondarenko, V., & Kovalevska, I. (2015). New developments in mining engineering 2015: Theoretical and practical solutions of mineral resources mining. London, United Kingdom: CRC Press, 607 p. https://doi.org/10.1201/b19901
  5. Pivnyak, G., Bondarenko, V., Kovalevs’ka, I., & Illiashov, M. (2012). Geomechanical processes during underground mining. London, United Kingdom: CRC Press, 238 p. https://doi.org/10.1201/b13157
  6. Grinyuk, T.Yu. (2008). Obosnovanie neobkhodimosti kompleksnogo podkhoda k dobyche i pererabotke bazal’tov Volyni. Heotekhnichna Mekhanika, (57), 21-25.
  7. Nadutyy, V.P., & Hrynyuk, T.Yu. (2006). Eksperimental’nye issledovaniya sostava i vybora metoda pererabotki med’soderzhashchykh bazal’tov Volyni. Visnyk Natsional’noho Tekhnichnoho Universytetu “KHPI”, (25), 101-107.
  8. Toscan, L., Kautzmann, R., & Sabedot, S. (2007). The residuals of basalt mining in the northeast of Rio Grande do Sul, Brazil: Evaluation of the problem. Revista Escola de Minas, (60), 657-662. https://doi.org/10.1590/S0370-44672007000400011
  9. Tamirat, T., Chekol, T., & Meshesha, D. (2021). Petrology and geochemistry of basaltic rocks from north western Ethiopian plateau continental flood basalt. Journal of African Earth Sciences, 182(4), 104282. https://doi.org/10.1016/j.jafrearsci.2021.104282
  10. Zh, L., Chunsheng, Z., & Chuanqing, Z. (2021). Effects of amygdale heterogeneity and sample size on the mechanical properties of basalt. Journal of Rock Mechanics and Geotechnical Engineering, 14(1), 93-107. https://doi.org/10.1016/j.jrmge.2021.10.001
  11. Malanchuk, Z., Malanchuk, Ye., & Khrystiuk, A. (2016). Mathematical modeling of hydraulic mining from placer deposits of minerals. Mining of Mineral Deposits, 10(2), 18-24. https://doi.org/10.15407/mining10.02.018
  12. Malanchuk, Z., Moshynskyi, V., Malanchuk, Y., & Korniienko, V. (2018). Physico-mechanical and chemical characteristics of amber. Solid State Phenomena, (277), 80-89. https://doi.org/10.4028/www.scientific.net/ssp.277.80
  13. Levine, R.M., Brininstool, M., & Wallace, G.J. (2007). The mineral industry of Ukraine. Minerals Yearbook, (3), 46.
  14. Malanchuk, Z., Korniyenko, V., Malanchuk, Y., & Khrystyuk, A. (2016). Results of experimental studies of amber extraction by hydromechanical method in Ukraine. Eastern-European Journal of Enterprise Technologies, 3(10(81)), 24-28. https://doi.org/10.15587/1729-4061.2016.72404
  15. Sai, K., Malanchuk, Z., Petlovanyi, M., Saik, P., & Lozynskyi, V. (2019). Research of thermodynamic conditions for gas hydrates formation from methane in the coal mines. Solid State Phenomena, (291), 155-172. https://doi.org/10.4028/www.scientific.net/SSP.291.155
  16. Lozynskyi, V., Saik, P., Petlovanyi, M., Sai, K., Malanchuk Z., & Malanchyk, Ye. (2018). Substantiation into mass and heat balance for underground coal gasification in faulting zones. Inzynieria Mineralna, 19(2), 289-300. https://doi.org/10.29227/IM-2018-02-36
  17. Pedchenko, M., Pedchenko, L., Nesterenko, T., & Dyczko, A. (2018). Technological solutions for the realization of NGH-technology for gas transportation and storage in gas hydrate form. Solid State Phenomena, (277), 123-136. https://doi.org/10.4028/www.scientific.net/SSP.277.123
  18. Lozynskyi, V., Falshtynskyi, V., Saik, P., Dychkovskyi, R., Zhautikov, B., & Cabana, E. (2022). Use of magnetic fields for intensification of coal gasification process. Rudarsko-Geološko-Naftni Zbornik, 37(5), 61-74. https://doi.org/10.17794/rgn.2022.5.6
  19. Kostenko, M.M. (2014). A raw mineral-material base of Ukraine. Article 3. State of raw mineral-material base of non-metal minerals of Ukraine and basic directions of geological survey works. Mineral Resources of Ukraine, (4), 6-13.
  20. Horoshkova, L., Volkov, V., & Khlobystov, I. (2019). Prognostic model of mineral resources development in Ukraine. Monitoring, (1), 1-5.https://doi.org/10.3997/2214-4609.201903171
  21. Kryvdik, S.G. (2002). Rare-metal syenites of the Ukrainian Shield. Geochemistry International, 40(7), 639-648.
  22. Tomilenko, A.A., & Kovyazin, S.V. (2008). Development of corona textures around olivine in anorthosites of the Korosten’pluton, Ukrainian Shield: Mineralogy, geochemistry, and fluid inclusions. Petrology, 16(1), 87-103. https://doi.org/10.1134/S0869591108010050
  23. Abdullayeva, A., Kalabayeva, A., Ivanov, A., Abdullayev, S., & Bakyt, G. (2022). Methods for identification of complex industrial control objects on their accelerating characteristics. Communications, 24(3), 239-246. https://doi.org/10.26552/com.C.2022.3.B239-B246
  24. Bakyt, G.B., Seidemetova, Z.S., Abdullayev, S.S., Adilova, N.J., Kamzina, A.D., & Aikumbekov, M.N. (2020). Create a traffic control information space in the logistics environment. Journal of Advanced Research in Law and Economics, 11(2), 290-300. https://doi.org/10.14505/jarle.v11.2(48).03
  25. Yulusov, S., Surkova, T.Y., Kozlov, V.A., & Barmenshinova, M. (2018). Application of hydrolytic precipitation for separation of rare-earth and impurity. Journal of Chemical Technology and Metallurgy, 53(1), 27-30.
  26. Malanchuk, E., Malanchuk, Z., Korniienko, V., & Gromachenko, S. (2016). The results of magnetic separation use in ore processing of metalliferous raw basalt of Volyn region. Mining of Mineral Deposits, 10(3), 77-83. https://doi.org/10.15407/mining10.03.077
  27. Malanchuk, Y., Moshynskyi, V., Khrystyuk, A., Malanchuk, Z., Korniienko, V., & Abdiev, A. (2022). Analysis of the regularities of basalt open-pit fissility for energy efficiency of ore preparation. Mining of Mineral Deposits, 16(1), 68-76. https://doi.org/10.33271/mining16.01.068
  28. Yefremov, E.I., Nadutyy, V.P., & Kratkovskiy, I.L. (2008). Re-komendatsii po povysheniyu ekonomicheskoy effektivnosti burovzryvnykh rabot na Rafalovskom bazal’tovom kar’yere. Geotekhnichna Mekhanika, 1-9.
  29. Shumlyanskyy, L., Franz, G., Glynn, S., Mytrokhyn, O., Voznyak, D., & Bilan, O. (2021). Geochronology of granites of the western Korosten AMCG complex (Ukrainian Shield): Implications for the emplacement history and origin of miarolitic pegmatites. European Journal of Mineralogy, 33(6), 703-716. https://doi.org/10.5194/ejm-33-703-2021
  30. Mendygaliyev, A., Arshamov, Y., & Yazikov, E. (2022). Orthogonal-contour geometrization of hydrogenetic ore mineralizations. Engineering Journal of Satbayev University, 144(3), 30-33. https://doi.org/10.51301/ejsu.2022.i3.05
  31. Naduty, V., Malanchuk, Z., Malanchuk, E., & Korniyenko, V. (2015). Modeling of vibro screening at fine classification of metallic basalt. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 441-443. https://doi.org/10.1201/b19901-77
  32. Naduty, V., Malanchuk, Z., Malanchuk, Y., & Korniyenko, V. (2016). Research results proving the dependence of the copper concentrate amount recovered from basalt raw material on the electric separator field intensity. Eastern-European Journal of Enterprise Technologies, 5(5(83)), 19-24. https://doi.org/10.15587/1729-4061.2016.79524
  33. Abdikadirova, H.R., Amreeva, K.E., Kalishev, M.G., & Zhautikova, S.B. (2019). Evaluation of the efectiveness of alimentary correction of pathological changes in hepatic tissue under the inffluence of industrial copper-containing dust in the experiment. Meditsina Truda i Promyshlennaya Ekologiya, 59(7), 438-443. https://doi.org/10.31089/1026-9428-2019-59-7-438-443
  34. Esenbaeva, G.T., Zhautikova, S.B., Mindubayeva, F.A., & Kadyrova, I.A. (2014). A method for predicting probability of stroke. Zhurnal Nevrologii i Psihiatrii imeni S.S. Korsakova, (3), 51-54.
  35. Malanchuk, Y., Korniienko, V., Malanchuk, L., & Zaiets, V. (2020). Research into the moisture influence on the physical-chemical tuff-stone characteristics in basalt quarries of the Rivne-Volyn region. E3S Web of Conferences, (201), 01036. https://doi.org/10.1051/e3sconf/202020101036
  36. Pysmenniy, S., Shvager, N., Shepel, O., Kovbyk, K., & Dolgikh, O. (2020). Development of resource-saving technology when mining ore bodies by blocks under rock pressure. E3S Web of Conferences, (166), 02006. https://doi.org/10.1051/e3sconf/202016602006
  37. Pysmennyi, S., Fedko, M., Chukharev, S., Rysbekov, K., Kyelgyenbai, K., & Anastasov, D. (2022). Technology for mining of complex-structured bodies of stable and unstable ores. IOP Conference Series: Earth and Environmental Science, 970(1), 012040. https://doi.org/10.1088/1755-1315/970/1/012040
  38. Malanchuk, Z., Malanchuk, Y., Korniyenko, V., & Ignatyuk, I. (2017). Examining features of the process of heavy metals distribution in technogenic placers at hydraulic mining. Eastern-European Journal of Enterprise Technologies, 1(10(85)), 45-51. https://doi.org/10.15587/1729-4061.2017.92638
  39. Nadutyy, V.P., Érpert, A.M., & Hrynyuk, T.Yu. (2007). Opredelenye treshchynovatosty ustupa bazal’tovoho kar’era. Heotekhnichna Mekhanika, (68), 40-48.
  40. Dosmukhamedov, N., Argyn, A., Zholdasbay, E., & Moldabayeva, G. (2020). Forms of oxygen presence in copper–lead matte. Journal of Materials Research and Technology, 9(5), 11826-11833. https://doi.org/10.1016/j.jmrt.2020.08.029
  41. Moshynskyi, V., Zhomyruk, R., Vasylchuk, O., Semeniuk, V., Okseniuk, R., Rysbekov, K., & Yelemessov, K. (2021). Investigation of technogenic deposits of phosphogypsum dumps. E3S Web of Conferences, (280), 08008. https://doi.org/10.1051/e3sconf/202128008008
  42. Akilbekova, S., Myrzalieva, S., Moldabayeva, G., Mamyrbayeva, K., Turkmenbayeva, M., & Suleimenova, B. (2021). Investigation of the process of sulfide-firing of gold-antimony concentrate. Journal of Chemical Technology & Metallurgy, 56(5).
  43. Moshynskyi, V., Malanchuk, Z., Tsymbaliuk, V., Malanchuk, L., Zhomyruk, R., & Vasylchuk, O. (2020). Research into the process of storage and recycling technogenic phosphogypsum placers. Mining of Mineral Deposits, 14(2), 95-102. https://doi.org/10.33271/mining14.02.095
  44. Malanchuk, Z., Moshynskyi, V., Malanchuk, V., Korniienko, Y., & Koziar, M. (2020). Results of research into the content of rare earth materials in man-made phosphogypsum deposits. Key Engineering Materials, (844), 77-87. https://doi.org/10.4028/www.scientific.net/kem.844.77
  45. Tuğrul, A., & Arel, E. (2021). Mineralogical, chemical and geotechnical characteristics of basaltic soil in Niksar, Northern Turkey. Engineering Geology, 199-206. https://doi.org/10.1201/9780429087813-20
  46. Jamshaid, H., & Mishra, R. (2016). A green material from rock: basalt fiber–a review. The Journal of The Textile Institute, 107(7), 923-937. https://doi.org/10.1080/00405000.2015.1071940
  47. Kostrzewa-Demczuk, P., Stepien, A., Dachowski, R., & Krugiełka, A. (2021). The use of basalt powder in autoclaved brick as a method of production waste management. Journal of Cleaner Production, (320), 128900. https://doi.org/10.1016/j.jclepro.2021.128900
  48. Chakrabarti, S., & Kodikara, J. (2003). Basaltic crushed rock stabilized with cementitious additives: compressive strength and stiffness, drying shrinkage, and capillary flow characteristics. Transportation Research Record, 1819(1), 18-26. https://doi.org/10.3141/1819b-03
  49. Portnov, V.S., Yurov, V.M., & Maussymbayeva, A.D. (2016). Applied problems of thermodynamic approach to the analysis of geophysical information. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (1), 5-11.
  50. Cockell, C.S., & Santomartino, R. (2022). Mining and microbiology for the solar system silicate and basalt economy. In‐Space Manufacturing and Resources: Earth and Planetary Exploration Applications, 163-185. https://doi.org/10.1002/9783527830909.ch8
  51. Dychkovskyi, R., Falshtynskyi, V., Ruskykh, V., Cabana, E., & Kosobokov, O. (2018). A modern vision of simulation modelling in mining and near mining activity. E3S Web of Conferences, (60), 00014. https://doi.org/10.1051/e3sconf/20186000014
  52. Wang, J., Apel, D.B., Dyczko, A., Walentek, A., Prusek, S., Xu, H., & Wei, C. (2022). Analysis of the damage mechanism of strainbursts by a global-local modeling approach. Journal of Rock Mechanics and Geotechnical Engineering, 14(6), 1671-1696. https://doi.org/10.1016/j.jrmge.2022.01.009
  53. Malanchuk, Z.R., Moshynskyi, V.S., Korniienko, V.Y., Malanchuk, Y.Z., & Lozynskyi, V.H. (2019). Substantiating parameters of zeolite-smectite puff-stone washout and migration within an extraction chamber. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 11-18. https://doi.org/10.29202/nvngu/2019-6/2
  54. Malanchuk, Z., Moshynskyi, V., Stets, S., Ignatiuk, I., & Galiyev, D. (2020). Modelling hydraulic mixture movement along the extraction chamber bottom in case of hydraulic washout of the puff-stone. E3S Web of Conference, (201), 01011. https://doi.org/10.1051/e3sconf/202020101011
  55. Stavrou, A., & Murphy, W. (2018). Quantifying the effects of scale and heterogeneity on the confined strength of micro-defected rocks. International Journal of Rock Mechanics and Mining Sciences, (102), 131-143. https://doi.org/10.1016/j.ijrmms.2018.01.019
  56. Portnov, V., Kamarov, R., Mausymbaeva, A., & Yurov, V. (2014). Link of specific electric resistance with qualitative and strength characteristics of ores. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining, 65-70. https://doi.org/10.1201/b17547-13
  57. Malanchuk, Z., Zaiets, V., Tyhonchuk, L., Moshchych, S., Gayabazar, G., & Dang, P. T. (2021). Research of the properties of quarry tuff-stone for complex processing. E3S Web of Conferences, (280), 01003. https://doi.org/10.1051/e3sconf/202128001003
  58. Amralinova, B.B., Frolova, O.V., Mataibaeva, I.E., Agaliyeva, B.B., & Khromykh, S.V. (2021). Mineralization of rare metals in the lakes of East Kazakhstan. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 16-21. https://doi.org/10.33271/nvngu/2021-5/016
  59. Kobegen, Ye., Yessengaliyev, D.A., Boranbaeva, B.M., Aitbaev, N.B., & Koishina, G.M. (2022). Calculation of thermodynamic functions during agglomeration of heterogeneous charge components. Engineering Journal of Satbayev University, 144(3), 22-29. https://doi.org/10.51301/ejsu.2022.i3.04
  60. Dyachkov, B.A., Amralinova, B.B., Mataybaeva, I.E., Dolgopolova, A.V., Mizerny, A.I., & Miroshnikova, A.P. (2017). Laws of formation and criteria for predicting nickel content in weathering crusts of east Kazakhstan. Journal of the Geological Society of India, 89(5), 605-609. https://doi.org/10.1007/s12594-017-0650-7
  61. Abikenova, F.S., Meyramov, G., Zhautikova, S., Abdikadirova, K., Zhienbayeva, C., Talaspekova, Y., & Suleimenova, B. (2021). Investigation of Antidiabetogenic Effect of the Iodine-Selenium Concentrate in Animals with Chronic Alloxan Diabetes of Varying Severity. Open Access Macedonian Journal of Medical Sciences, (9), 535-540. https://doi.org/10.3889/oamjms.2021.5873
  62. Juneja, A., & Pinaki, P. (2019). A numerical study on extent of crushed zone around blasthole in basalt rock. Geotechnical and Geological Engineering, (37), 1283-1296. https://doi.org/10.1007/s10706-018-0685-6
  63. Strzałkowski, P., Duchnowska, M., Kaźmierczak, U., Bakalarz, A., Wolny, M., Karwowski, P., & Stępień, T. (2021). Evaluation of the structure and geometric properties of crushed igneous rock aggregates. Materials, 14(23), 7202. https://doi.org/10.3390/ma14237202
  64. Telkov, Sh.A., Motovilov, I.Tu., Barmenshinova, M.B., & Abisheva, Z.S. (2021). Study of gravity-flotation concentration of lead-zinc ore at the Shalkiya deposit. Obogashchenie Rud, (6), 9-15.
  65. Mukhanova, A.A., Yessengaziyev, A.M., Barmenshinova, M.B., Samenova, N.O., Toilanbay, G.A., & Toktagulova, K.N. (2022). Improvement of the technology related gold-containing raw materials with the use of ultramicroheterogeneous flotoreagent. Metalurgija, 61(3-4), 777-780.
  66. Yessengaziyev, A., Mukhanova, A., Tussupbayev, N., & Barmenshinova, M. (2022). The usage of basic and ultramicroheterogenic flotation reagents in the processing of technogenic copper-containing raw materials. Journal of Chemical Technology and Metallurgy, 57(6), 1235-1242.
  67. Malanchuk, Y., Moshynskyi, V., Korniienko, V., & Malanchuk, Z. (2018). Modeling the process of hydromechanical amber extraction. E3S Web of Conferences, (60), 00005. https://doi.org/10.1051/e3sconf/20186000005
  68. Malanchuk, Z., Korniyenko, V., Malanchuk, Y., Khrystyuk, A., & Kozyar, M. (2020). Identification of the process of hydromechanical extraction of amber. E3S Web of Conferences, (166), 02008. https://doi.org/10.1051/e3sconf/202016602008
  69. Kruglov, O., & Menshov, O. (2017). To the soil magnetic susceptibility in modern soil science. Geoinformatics – Theoretical and Applied Aspects, 1-6. https://doi.org/10.3997/2214- 4609.201701906
  70. Kalybekov, T., Rysbekov, K., Nаuryzbayeva, D., Toktarov, A., & Zhakypbek, Y. (2020). Substantiation of averaging the content of mined ores with account of their readiness for mining. E3S Web of Conferences, (201), 01039. https://doi.org/10.1051/e3sconf/202020101039
  71. Abyshev, B., Shlimas, D.I., Zdorovets, M.V., Arshamov, Y.K., & Kozlovskiy, A.L. (2022). Study of radiation resistance to helium swelling of Li2ZrO3/LiO and Li2ZrO3 ceramics. Crystals, 12(3), 384.
  72. Malanchuk, Z., Korniienko, V., Malanchuk, Y., & Moshynskyi, V. (2019). Analyzing vibration effect on amber buoying up velocity. E3S Web of Conferences, (123), 01018. https://doi.org/10.1051/e3sconf/201912301018
  73. Yang, D., Zhao, J., Suhail, S.A., Ahmad, W., Kamiński, P., Dyczko, A., Salmi, A., & Mohamed, A. (2022). Investigating the ultrasonic pulse velocity of concrete containing waste marble dust and its estimation using artificial intelligence. Materials, 15(12), 4311. https://doi.org/10.3390/ma15124311
  74. Nadutyi, V., Korniienko, V., Malanchuk, Z., & Cholyshkina, O. (2019). Analytical presentation of the separation of dense suspension for the extraction of amber. E3S Web of Conferences, (109), 00059. https://doi.org/10.1051/e3sconf/201910900059
  75. Лицензия Creative Commons