Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Studying rock mass jointing to provide bench stability while Northern Katpar deposit developing in Kazakhstan

Bauyrzhan Tolovkhan1, Assemgul Smagulova1, Nurbol Khuangan1, Sergey Asainov2, Sayat Issagulov1, Dinara Kaumetova3, Bolatkhan Khussan1, Manarbek Sandibekov4

1Abylkas Saginov Karaganda Technical University, Karaganda, Kazakhstan

2eoMark Scientific and Engineering Center LLP, Karaganda, Kazakhstan

3Sh. Ualikhanov Kokshetau State University, Kokshetau, Kazakhstan

4Satbayev University, Almaty, Kazakhstan


Min. miner. depos. 2023, 17(2):99-111


https://doi.org/10.33271/mining17.02.099

Full text (PDF)


      ABSTRACT

      Purpose is to identify the basic joint systems, their characteristics, distribution within the rock mass, and determine impact of the joints on the bench stability.

      Methods. The risks of strain emergence in the form of blocks sliding along weakness surfaces within the local areas were determined based upon the definition of rock stability loss. The results of large-scale measurements of jointing were processed using circular and bar diagrams as well as stereographic grids. In the context of the paper, kinematic analysis was implemented through Dips Rocscience Inc. Software.

      Findings. Five basic joint systems have been identified; joints of 2nd and 5th systems are the most commonly encountered among them. The results of the jointing determination within the open pit boundaries have been represented as well as the open pit wall stability in terms of each site inclusive of consideration of potential strains along the sliding surface.

      Originality. For the first time, zoning of the open pit wall in terms of slide types has been performed. It has been identified that potential shear of a prismatic block is 33%; at the same time, 66% are bench destruction with the block toppling. The risk of wedge-shaped block shear is minimal.

      Practical implications. The research findings may be helpful to define and select both parameters and conditions of safe mineral extraction under the specific mining and geological conditions. In turn, the abovementioned will help reduce the risk of accidence while providing scientifically substantiated approach to select quarrying sequence, techniques, and system.

      Keywords: jointing, open pit, rock mass, stability, bench


      REFERENCES

  1. Kusin, F.M., Awang, N.H.C., Hasan, S.N.M.S., Rahim, H.A.A., Azmin, N., Jusop, S., & Kim, K.W. (2019). Geo-ecological evaluation of mineral, major and trace elemental composition in waste rocks, soils and sediments of a gold mining area and potential associated risks. Catena, (183), 104229. https://doi.org/10.1016/j.catena.2019.104229
  2. Sergeant, C.J., Sexton, E.K., Moore, J.W., Westwood, A.R., Nagorski, S.A., Ebersole, J.L., & Skuce, N. (2022). Risks of mining to salmonid-bearing watersheds. Science Advances, 8(26), eabn0929. https://doi.org/10.1126/sciadv.abn0929
  3. Kieush, L., Rieger, J., Schenk, J., Brondi, C., Rovelli, D., Echterhof, T., Cirilli, F., Thaler, C., Jaeger, N., Snaet, D., Peters, K. & Colla, V. (2022). A Comprehensive Review of Secondary Carbon Bio-Carriers for Application in Metallurgical Processes: Utilization of Torrefied Biomass in Steel Production. Metals, 12(12), 2005. https://doi.org/10.3390/met12122005
  4. Zhong, X., Chen, Z., Li, Y., Ding, K., Liu, W., Liu, Y., & Qiu, R. (2020). Factors influencing heavy metal availability and risk assessment of soils at typical metal mines in Eastern China. Journal of Hazardous Materials, (400), 123289. https://doi.org/10.1016/j.jhazmat.2020.123289
  5. Demin, W.F., Demina, T.I., Kaynazarov, A.S., & Kaynazarova, A.S. (2018). Evaluation of the workings technological schemes effectiveness to increase the stability of their contours. Sustainable Development of Mountain Territories, 10(4), 606-616. https://doi.org/10.21177/1998-4502-2018-10-4-606-616
  6. Wajs, J., Trybała, P., Górniak-Zimroz, J., Krupa-Kurzynowska, J., & Kasza, D. (2021). Modern solution for fast and accurate inventorization of open-pit mines by the active remote sensing technique – Case study of Mikoszów granite mine (Lower Silesia, SW Poland). Energies, 14(20), 6853. https://doi.org/10.3390/en14206853
  7. Moldabayev, S., Adamchuk, A., Sarybayev, N., & Shustov, A. (2019). Improvement of open cleaning-up schemes of border mineral reserves. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, 19(1), 331-338. https://doi.org/10.5593/sgem2019/1.3/S03.042
  8. Sobko, B.Yu., & Lozhnikov, O.V. (2018). Determination of cut-off wall cost efficiency at Motronivskyi pit mining. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (3), 44-49. https://doi.org/10.29202/nvngu/2018-3/1
  9. Sakantsev, G.G., Sakantsev, M.G., Cheskidov, V.I., & Norri, V.K. (2014). Improvement of deep-level mining systems based on optimization of accessing and open pit mine parameters. Journal of Mining Science, (50), 714-718. https://doi.org/10.1134/S1062739114040127
  10. Hongze, Z., Dongyu, W., Ming, M., & Kaihui, Z. (2020). Parameter inversion and location determination of evolutionary weak layer for open-pit mine slope. International Journal of Coal Science & Technology, (7), 714-724. https://doi.org/10.1007/s40789-020-00337-w
  11. Tang, W., Li, F., Xiang, G., & Liu, M. (2022). Investigation on flow field characteristics in an open-pit coal mine. Environmental Science and Pollution Research, 29(18), 27585-27594. https://doi.org/10.1007/s11356-021-18160-4
  12. Portnov, V., Kamarov, R., Mausymbaeva, A., & Yurov, V. (2014). Link of specific electric resistance with qualitative and strength characteristics of ores. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining, 65-70. https://doi.org/10.1201/b17547-13
  13. Rysbekov, K.B., Bitimbayev, M.Z., Akhmetkanov, D.K., & Miletenko, N.A. (2022). Improvement and systematization of principles and process flows in mineral mining in the Republic of Kazakhstan. Eurasian Mining, (1), 41-45. https://doi.org/10.17580/em.2022.01.08
  14. Demin, V.F., Nemova, N.A., Demina, T.V., & Karataev, A.D. (2015). Deformation of enclosing rocks near mine workings depending on factors affecting. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 35-39.
  15. Zholmagambetov, N., Khalikova, E., Demin, V., Balabas, A., Abdrashev, R., & Suiintayeva, S. (2023). Ensuring a safe geomechanical state of the rock mass surrounding the mine workings in the Karaganda coal basin, Kazakhstan. Mining of Mineral Deposits, 17(1), 74-83. https://doi.org/10.33271/mining17.01.074
  16. Stupnik, M., Kolosov, V., Pysmennyi, S., & Kostiantyn, K. (2019). Selective mining of complex stuctured ore deposits by open stop systems. E3S Web of Conferences, (123), 01007. https://doi.org/10.1051/e3sconf/201912301007
  17. Fedko, M.B., Muzyka, I.O., Pysmennyi, S.V., & Kalinichenko, O.V. (2019). Determination of drilling and blasting parameters considering the stress-strain state of rock ores. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (1), 37-41. https://doi.org/10.29202/nvngu/2019-1/20
  18. Dyomin, V.F., Nemova, N.A., Dyomina, T.V., & Zeytinova, S.B. (2016). Control over geomechanical processes intended to improve a coal-and-rock massif stability. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 5-10.
  19. Carlà, T., Farina, P., Intrieri, E., Botsialas, K., & Casagli, N. (2017). On the monitoring and early-warning of brittle slope failures in hard rock masses: Examples from an open-pit mine. Engineering Geology, (228), 71-81. https://doi.org/10.1016/j.enggeo.2017.08.007
  20. Zhang, L., Chen, Z., Nian, G., Bao, M., & Zhou, Z. (2023). Base friction testing methodology for the deformation of rock masses caused by mining in an open-pit slope. Measurement, (206), 112235. https://doi.org/10.1016/j.measurement.2022.112235
  21. Rakishev, B.R., Auezova, A.M., Kuttybayev, A.Y., & Kozhantov, A.U. (2014). Specifications of the rock massifs by the block sizes. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 22-27.
  22. Abdikadirova, K.R., Amreyeva, K.Y., Zhautikova, S.B., Kostyleva, O.A., Abikenova, F.S., Chergizova, B.T., Talaspekova, Y., & Atshabarova, S.S. (2020). Morphological changes in the hepatic tissue at the impact of industrial copper-bearing dust in the experiment. Open Access Macedonian Journal of Medical Sciences, (8), 653-656. https://doi.org/10.3889/oamjms.2020.3473
  23. Abdikadirova, H.R., Amreeva, K.E., Kalishev, M.G., & Zhautikova, S.B. (2019). Evaluation of the efectiveness of alimentary correction of pathological changes in hepatic tissue under the inffluence of industrial copper-containing dust in the experiment. Meditsina Truda i Promyshlennaya Ekologiya, 59(7), 438-443. https://doi.org/10.31089/1026-9428-2019-59-7-438-443
  24. Fisenko, G.L. (1965). Ustoychivost bortov karyerov i otvalov. Moskva, Rossiya: Nedra, 376 p.
  25. Galperin, A.M., & Semenova, E.A. (2016). Prognoz geomekhanicheskikh protsessov na gornykh predpriyatiyakh na osnove teorii konsolidatsii porodnykh massivov. Geoekologiya. Inzhenernaya Geologiya, Gidrogeologiya, Geokriologiya, (2), 111-120.
  26. Krukovskyi, O., Bulich, Y., Kurnosov, S., Yanzhula, O., & Demin, V. (2022). Substantiating the parameters for selecting a pillar width to protect permanent mine workings at great depths. IOP Conference Series: Earth and Environmental Science, 970(1), 012049. https://doi.org/10.1088/1755-1315/970/1/012049
  27. Amralinova, B., Agaliyeva, B., Lozynskyi, V., Frolova, O., Rysbekov, K., Mataibaeva, I., & Mizernaya, M. (2023) Rare-metal mineralization in salt lakes and the linkage with composition of granites: Evidence from Burabay rock mass (Eastern Kazakhstan). Water, 15(7), 1386. https://doi.org/10.3390/w15071386
  28. Sharapatov, A., Shayahmet, M., & Arshamov, Y.К. (2016). About modern technology field geophysical research areas sulfide mineralization in western Kazakhstan. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 1(415), 102-107.
  29. Amralinova, B.B., Frolova, O.V., Mataibaeva, I.E., Agaliyeva, B.B., & Khromykh, S.V. (2021). Mineralization of rare metals in the lakes of East Kazakhstan. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 16-21. https://doi.org/10.33271/nvngu/2021-5/016
  30. Arshamov, Y., Seitmuratova, E., & Baratov, R. (2015). Perspectives of porphyry copper mineralizations in Zhongar-Balkhash fold system (Kazakhstan). International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, 345-350.
  31. Volkov, A.P., Buktukov, N.S., & Kuanyshbaiuly, S. (2022). Safe and effective methods for mining thin tilt and steeply dipping deposits with ore drawing via mud flow. Gornyi Zhurnal, (4), 86-91. https://doi.org/10.17580/gzh.2022.04.13
  32. Demin, V., Tomilov, A., & Sultanova, B. (2018). Automation of the design of the anchorage system taking into account the geomechanical state of the massif and mining development schemes. MATEC Web of Conferences, (155), 01023. https://doi.org/10.1051/matecconf/201815501023
  33. Narodkhan, D., Amanbek, Z., Nurbol, K., & Kopeiuly, I. (2021). Formation of coal section side instability areas under the influence of distributed load. Sustainable Development of Mountain Territories, 13(4), 558-563. https://doi.org/10.21177/1998-4502-2021-13-4-558-563
  34. Imansakipova, B.B., Baygurin, Z.D., Soltabaeva, S.T., Milev, I., & Miletenko, I.V. (2014). Causes of strain of buildings and structures in areas of abnormal stress and surveillance terrestrial laser scanners. Life Science Journal, 11(9s), 165-170.
  35. Nurpeissova, M., Bitimbayev, M.Zh., Rysbekov, K.В., Derbisov, K., Тurumbetov, Т., & Shults, R. (2020). Geodetic substantiation of the saryarka copper ore region. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 6(444), 194-202. https://doi.org/10.32014/2020.2518-170X.147
  36. Portnov, V.S., Yurov, V.M., & Maussymbayeva, A.D. (2016). Applied problems of thermodynamic approach to the analysis of geophysical information. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (1), 5-11.
  37. Shults, R., Soltabayeva, S., Seitkazina, G., Nukarbekova, Z., & Kucherenko, O. (2020). Geospatial monitoring and structural mechanics models: A case study of sports structures. International Conference on Environmental Engineering, (11), 1-9. https://doi.org/10.3846/enviro.2020.685
  38. Malybaev, S.K., Malaybaev, N.S., Isina, B.M., Kenzhekeeva, A.R., & Khuangan, N. (2016). Creating intelligent computer workstation of a freight officer in a single information space of railway transport: Synergetic approach. International Journal of Environmental and Science Education, 11(17), 9705-9721.
  39. Abdullayeva, A., Kalabayeva, A., Ivanov, A., Abdullayev, S., & Bakyt, G. (2022). Methods for identification of complex industrial control objects on their accelerating characteristics. Communications, 24(3), 239-246. https://doi.org/10.26552/com.C.2022.3.B239-B246
  40. Bakyt, G.B., Seidemetova, Z.S., Abdullayev, S.S., Adilova, N.J., Kamzina, A.D., & Aikumbekov, M.N. (2020). Create a traffic control information space in the logistics environment. Journal of Advanced Research in Law and Economics, 11(2), 290-300. https://doi.org/10.14505/jarle.v11.2(48).03
  41. Algiev, S., Turegeldinova, A., & Chowdhury, D. (2013). Knowledge share incentive: Exploring opportunities in railway service provider in Kazakhstan. Actual Problems of Economics, 141(3), 205-209.
  42. Krupnik, L.A., Bitimbaev, M.Z., Shaposhnik, S.N., Shaposhnik, Y.N., & Demin, V.F. (2015). Validation of rational backfill technology for Sekisovskoe deposit. Journal of Mining Science, 51(3), 522-528. https://doi.org/10.1134/S1062739115030138
  43. Kuzmenko, O., Petlyovanyy, M., & Heylo, A. (2014). Application of fine-grained binding materials in technology of hardening backfill construction. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining, 465-469. https://doi.org/10.1201/b17547-79
  44. Bazaluk, O., Anisimov, O., Saik, P, Lozynskyi, V., Akimov, O., & Hrytsenko, L. (2023). Determining the safe distance for mining equipment operation when forming an internal dump in a deep open pit. Sustainability, 15(7), 5912. https://doi.org/10.3390/su15075912
  45. Ryzhkov, S.O., Portnov, V.S., Huangan, N.Kh., Rakhimov, M.A., & Khmyrova, E.N. (2021). Research into stability of tailings storage at Vostochnaya coal processing plant (Central Kazakhstan) to assess its safe conservation and abandonment. Ugol’, (12), 57-62. https://doi.org/10.18796/0041-5790-2021-12-57-62
  46. Narodkhan, D., Isabek, T.K., Khodjaev, R.R., & Khuangan, N. (2020). Numerical simulation of the stability of the sides of coal mines under the influence of distributed loads. Sustainable Development of Mountain Territories, 12(3), 428-435. https://doi.org/10.21177/1998-4502-2020-12-3-428-435
  47. Hussan, B., Takhanov, D., Kuzmin, S., & Abdibaitov, S. (2021). Research into influence of drilling-and-blasting operations on the stability of the Kusmuryn open-pit sides in the Republic of Kazakhstan. Mining of Mineral Deposits, 15(3), 130-136. https://doi.org/10.33271/mining15.03.130
  48. Baibatsha, A., Dussembayeva, K., Bekbotayeva, A., & Abdullayeva, М.T. (2018). Tails of enrichment factories as the technogenic mineral resources. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, 18(1), 519-526. https://doi.org/10.5593/sgem2018/1.1/s01.066
  49. Yessengaziyev, A., Mukhanova, A., Tussupbayev, N., & Barmenshinova, M. (2022). The usage of basic and ultramicroheterogenic flotation reagents in the processing of technogenic copper-containing raw materials. Journal of Chemical Technology and Metallurgy, 57(6), 1235-1242.
  50. Du, S.G., Saroglou, C., Chen, Y., Lin, H., & Yong, R. (2022). A new approach for evaluation of slope stability in large open-pit mines: a case study at the Dexing Copper Mine, China. Environmental Earth Sciences, 81(3), 102. https://doi.org/10.1007/s12665-022-10223-0
  51. Tegachouang, N.C., Bowa, V.M., Li, X., Luo, Y., & Gong, W. (2022). Study of the influence of block caving underground mining on the stability of the overlying open pit mine. Geotechnical and Geological Engineering, 40(1), 165-173. https://doi.org/10.1007/s10706-021-01890-0
  52. Zhang, L., Chen, Z., Bao, M., Nian, G., Zhou, Z., & Zhu, T. (2022). Stability analysis and movement process determination of rock masses under open-pit to underground mining conditions. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 8(5), 148. https://doi.org/10.1007/s40948-022-00459-2
  53. Scoble, M.J., Hadjigeorgiou, J., & Lizotte, Y. (2022). An integrated stability assessment system for surface mine design. In Geotechnical Stability in Surface Mining (pp. 51-60). London, United Kingdom: CRC Press. https://doi.org/10.1201/9781003079286-7
  54. Hussan, B., Lozynska, M.I., Takhanov, D.K., Oralbay, A.O., & Kuzmin, S.L. (2021). Assessing the quality of drilling-and-blasting operations at the open pit limiting contour. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 42-48. https://doi.org/10.33271/nvngu/2021-6/042
  55. Issabek, T.K., Dyomin, V.F., & Ivadilinova, D.Т. (2019). Methods for monitoring the earth surface displacement at points of small geodetic network under the underground method of coal development. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 13-20. https://doi.org/10.29202/nvngu/20192/2
  56. Sobko, B.Yu., Denyschenko, O.V., Lozhnikov, O.V., & Kardash, V.A. (2018). The belt conveyor effectiveness at the rock haulage under flooded pit excavations. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 26-32. https://doi.org/10.29202/nvngu/2018-6/4
  57. Shustov, O.O., Haddad, J.S., Adamchuk, A.A., Rastsvietaiev, V.O., & Cherniaiev, O.V. (2019). Improving the construction of mechanized complexes for reloading points while developing deep open pits. Journal of Mining Science, 55(6), 946-953. https://doi.org/10.1134/S1062739119066332
  58. Isabek, T.K., Khuangan, N., Aitpayeva, A.R., & Shaimerdenova, R.T. (2020). Modeling the outburst state of an array with disjunctive disruption and mining using the finite element method. Ugol’, (6), 55-61. https://doi.org/10.18796/0041-5790-2020-6-55-61
  59. Demin, V., Nemova, N., Demina, T., & Stefluk, Y. (2015). Technology of rock massif state control. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 42-46.
  60. Kainazarov, A.S., Akpanbetova, A.Z., Kaynazarova, A.S., & Demin, V.F. (2018). Stabilization of quality of ore in underground development of Zhezkazgan deposit. Sustainable Development of Mountain Territories, 10(2), 281-288. https://doi.org/10.21177/1998-4502-2018-10-2-281-288
  61. Tolovkhan, B., Demin, V., Amanzholov, Zh., Smagulova, A., Tanekeyeva, G., Zairov, Sh., Krukovskyi, O., & Cabana, E. (2022). Substantiating the rock mass control parameters based on the geomechanical model of the Severny Katpar deposit, Kazakhstan. Mining of Mineral Deposits, 16(3), 123-133. https://doi.org/10.33271/mining16.03.123
  62. Yakovlev, A. (2016). Geo-mechanical software of pit edges and dumps forming. Problems of Subsoil Use, 4(11), 75-80. https://doi.org/10.18454/2313-1586.2016.04.075
  63. Demin, V.F., Yavorsky, V.V., Demina, T.V., & Tomilov, A.N. (2018). Efficient control of floor swelling in temporary roadways of coal mines. Gornyi Zhurnal, (4), 56-60. https://doi.org/10.17580/gzh.2018.04.10
  64. Dosmukhamedov, N., Argyn, A., Zholdasbay, E., & Moldabayeva, G. (2020). Forms of oxygen presence in copper-lead matte. Journal of Materials Research and Technology, 9(5), 11826-11833. https://doi.org/10.1016/j.jmrt.2020.08.029
  65. Akilbekova, S., Myrzalieva, S., Moldabayeva, G., Mamyrbayeva, K., Turkmenbayeva, M., & Suleimenova, B. (2021). Investigation of the process of sulfide-firing of gold-antimony concentrate. Journal of Chemical Technology & Metallurgy, 56(5).
  66. Mukhanova, A.A., Yessengaziyev, A.M., Barmenshinova, M.B., Samenova, N.O., Toilanbay, G.A., & Toktagulova, K.N. (2022). Improvement of the technology related gold-containing raw materials with the use of ultramicroheterogeneous flotoreagent. Metalurgija, 61(3-4), 777-780.
  67. Rekomendatsii po izucheniyu treshchinovatosti gornykh porod pri inzhenerno-geologicheskikh izyskaniyakh dlya stroitelstva. (1974). Moskva, Rossiya: Stroyizdat, 36 s.
  68. Seitmuratova, E., Arshamov, Y., Bekbotayeva, A., Baratov, R., & Dautbekov, D. (2016). Priority metallogenic aspects of late paleozioc volcanic-plutonic belts of Zhongar-Balkhash fold system. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, (1), 511-518. https://doi.org/10.5593/sgem2016/b11/s01.064
  69. Su, H., & Ma, S. (2022). Study on the stability of high and steep slopes under deep bench blasting vibration in open-pit mines. Frontiers in Earth Science, (10), 990012. https://doi.org/10.3389/feart.2022.990012
  70. Azhari, A., Yarahmadi Bafghi, A., Faramarzi, L., & Salamat Mamakani, R. (2022). Importance of 3D analyses on static and seismic stability of jointed open-pit mine slopes. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 1-19. https://doi.org/10.1680/jgeen.21.00030
  71. Bukrinskiy, V.A. (2001). Geometrizatsiya mestorozhdeniy pri ikh razrabotke. Marksheyderskiy Vestnik, (4), 43-46.
  72. Zertsalow, M.G., & Konyukhov, D.S. (2007). O raschete svay v skalnykh gruntakh. Osnovaniya, Fundamenty i Mekhanika Gruntov, (1), 8-12.
  73. Harrison, J.P., Hudson, J.A., & Popescu, M.E. (2002). Engineering rock mechanics: Part 2. Illustrative worked examples. Applied Mechanical Reviews, 55(2), B30-B31. https://doi.org/10.1115/1.1451166
  74. Martin, D., & Stacey, P. (2018). Guidelines for open pit slope design in weak rocks. CSIRO Publishing, 383 p. https://doi.org/10.1071/9781486303489
  75. Belousov, V.V. (1954). Osnovnye voprosy tektoniki. Moskva, Rossiya: Nedra, 606 s.
  76. Popov, V.N., & Baykov, B.N. (1991). Tekhnologiya otstroyki bortov karyerov. Moskva, Rossiya: Nedra, 252 s.
  77. Лицензия Creative Commons