Research into deformation processes in the rock mass surrounding the stoping face when mining sloping ore deposits)
Arnat Salkynov1, 2, Arailym Rymkulova2, Aigerim Suimbayeva2, Sholpan Zeitinova2
1LLP NPK “Algeorithm”, Karaganda, Kazakhstan
2Abylkas Saginov Karaganda Technical University, Karaganda, Kazakhstan
Min. miner. depos. 2023, 17(2):82-90
https://doi.org/10.33271/mining17.02.082
Full text (PDF)
      ABSTRACT
      Purpose. Determining the patterns for geomechanical state changes in the rock mass, depending on the stoping face technological parameters for sloping ore deposits.
      Methods. The state-of-the-art CAE Fidesys strength analysis system has been adopted to conduct the research on geomechanical processes around the stoping face, which is effective in a flat formulation. The system used provides a complete engineering process cycle from the preparation of the calculation model to the visualization of the calculation results. The real physical-mechanical properties of ores and host rocks of the Zhezkazgan field (Kazakhstan) are the initial data.
      Findings. As a research result, the patterns of change in the stress-strain state around the stoping face have been obtained, namely, the maximum tensile and compressive deformations in the room fenders and rocks of a parting, depending on its thickness (from 0 to 10 m). Based on the data obtained, it has been revealed that in the studied mining-geological conditions, elastic deformations predominate around the stoping face.
      Originality. As a result of conducted numerical experimental studies, a new solution is proposed for an important scientific problem related to predicting the natural and technogenic geomechanical state of the rock mass.
      Practical implications. The results obtained make it possible to develop technical solutions for the modernization of the room-and-pillar (panel-and-pillar) mining system under conditions of sloping fall of ore bodies in the conditions of the Zhezkazgan field.
      Keywords: Zhezkazgan field, stress-strain state, stability, pillar, room
      REFERENCES
- Gao, M., Xie, J., Guo, J., Lu, Y., He, Z., & Li, C. (2021). Fractal evolution and connectivity characteristics of mining-induced crack networks in coal masses at different depths. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, (7), 1-15. https://doi.org/10.1007/s40948-020-00207-4
- Zhigang, T., Chun, Z., Manchao, H., & Kuiming, L. (2020). Research on the safe mining depth of anti-dip bedding slope in Changshanhao Mine. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, (6), 1-20. https://doi.org/10.1007/s40948-020-00159-9
- Bitimbaev, M.Zh., & Edygenov, E.K. (2001). Scientific and technolo-gical developments of the institute in the field of mining matter. Gornyi Zhurnal, (11), 86-89.
- Begalinov, A., Shautenov, M., Almenov, T., & Bektur, B. (2022). Leaching process intensification of gold-bearing raw materials. Mining of Mineral Deposits, 16(2), 42-48. https://doi.org/10.33271/mining16.02.042
- Moldabayeva, G., & Abileva, S. (2021). Study and determination of regularities in variability of oil rheological properties to enhance oil recovery. Periodicals of Engineering and Natural Sciences (PEN), 9(4), 44-60. https://doi.org/10.21533/pen.v9i4.2299
- Mendygaliyev, A., Arshamov, Y., Selezneva, V., Yazikov, E., & Bekbotayeva, A. (2021). Prospects for application of multi-spectral earth sensing data in forecasting and searching for reservoir-infiltration uranium deposits. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 2(446), 90-97. https://doi.org/10.32014/2021.2518-170X.39
- Turekulova, A.N., Mukhambetova, L.K., Doshan, A.S., Issabekov, B.N., Chimgentbayeva, G.K., & Turegeldinova, A.Z. (2016). Government strategic support for investment activity. International Journal of Environmental and Science Education, 11(11), 4931-4940.
- Huang, J., Liu, J., Zhang, H., & Guo, Y. (2020). Sustainable risk analysis of China’s overseas investment in iron ore. Resources Policy, (68), 101771. https://doi.org/10.1016/j.resourpol.2020.101771
- Stupnik, M., Kolosov, V., Pysmennyi, S., & Kostiantyn, K. (2019). Selective mining of complex stuctured ore deposits by open stop systems. E3S Web of Conferences, (123), 01007. https://doi.org/10.1051/e3sconf/201912301007
- Chmura, D., Jagodziński, A.M., Hutniczak, A., Dyczko, A., & Woźniak, G. (2022). Novel ecosystems in the urban-industrial landscape–interesting aspects of environmental knowledge requiring broadening: A review. Sustainability, 14(17), 10829. https://doi.org/10.3390/su141710829
- Abdellah, W. (2022). Effects of a pillarless, center-out stoping pattern on haulage drift performance and ore tonnage at risk. Rudarsko-Geološko-Naftni Zbornik, 37(2), 87-96. https://doi.org/10.17794/rgn.2022.2.8
- Begalinov, A., Almenov, T., Zhanakova, R., & Bektur, B. (2020). Analysis of the stress deformed state of rocks around the haulage roadway of the Beskempir field (Kazakhstan). Mining of Mineral Deposits, 14(3), 28-36. https://doi.org/10.33271/mining14.03.028
- Pysmenniy, S., Shvager, N., Shepel, O. Kovbyk, K., & Dolgikh O. (2020). Development of resource-saving technology when mining ore bodies by blocks under rock pressure. E3S Web of Conferences, (166), 02006. https://doi.org/10.1051/e3sconf/202016602006
- Pravila obespecheniya promyshlennoy bezopasnosti dlya opasnykh proizvodstvennykh obyektov, vedushchikh gornyye i geologorazvedochnyye raboty. (2014). Prikaz Ministra po investitsiyam i razvitiyu #352. Astana, Kazakhstan: Ministerstvo po investitsiyam i razvitiyu, Ministerstvo yustitsii.
- Pysmennyi, S., Fedko, M., Shvaher, N., & Chukharev, S. (2020). Mining of rich iron ore deposits of complex structure under the conditions of rock pressure development. E3S Web of Conferences, (201), 01022. https://doi.org/10.1051/e3sconf/202020101022
- Volkov, A.P., Buktukov, N.S., & Kuanyshbaiuly, S. (2022). Safe and effective methods for mining thin tilt and steeply dipping deposits with ore drawing via mud flow. Gornyi Zhurnal, (4), 86-91. https://doi.org/10.17580/gzh.2022.04.13
- Veselova, L.K., Bexeitova, R.T., Kassymkamova, K.K.M., Duisebaeva, K.Z., Turapova, R.O., Tumazhanova, S.O., & Taukebaev, O.Z. (2016). Altitudinal zonation of exomorphogenesis in Northern Tien Shan. International Electronic Journal of Mathematics Education, 11(7), 1987-2001.
- Vremennaya instruktsiya po raschetu tselikov pri kamerno-stolbovoy sisteme razrabotki s barernymi tselikami dlya pologopadayushchikh i naklonnykh zalezhey Dzhezkazganskogo mestorozhdeniya. (1984). Alma-Ata, Kazakhstan.
- Bekbergenov, D., Jangulova, G., Kassymkanova, K.-K., & Bektur, B. (2020). Mine technical system with repeated geotechnology within new frames of sustainable development of underground mining of caved deposits of the Zhezkazgan field. Geodesy and Cartography, 46(4), 182-187. https://doi.org/10.3846/gac.2020.10571
- Baibatsha, A.B., Bekbotayeva, A.A., & Bekbotayev, A.T. (2015). Ore minerals of Carboniferous copper sediment-hosted Zhezkazgan deposit (Central Kazakhstan). International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, (1), 329-335.
- Serdaliyev, Y., Iskakov, Y., Bakhramov, B., & Amanzholov, D. (2022). Research into the influence of the thin ore body occurrence elements and stope parameters on loss and dilution values. Mining of Mineral Deposits, 16(4), 56-64. https://doi.org/10.33271/mining16.04.056
- Mussin, A., Imashev, A., Matayev, A., Abeuov, Ye., Shaike, N., & Kuttybayev, A. (2023). Reduction of ore dilution when mining low-thickness ore bodies by means of artificial maintenance of the mined-out area. Mining of Mineral Deposits, 17(1), 35-42. https://doi.org/10.33271/mining17.01.035
- Gjorgjiev, L., Serafimovski, T., Filev, K., & Tasev, G. (2016). Overview of the natural parameters from the geological-economical evaluation of the Borov Dol ore deposit, Republic of Macedonia. Special Issue of Geologica Macedonica, 4(2), 621-628.
- Esenbaeva, G.T., Zhautikova, S.B., Mindubayeva, F.A., & Kadyrova, I.A. (2014). A method for predicting probability of stroke. Zhurnal. Korsakova, (3), 51-54.
- Turegeldinova, A.Z. (2014). Analysis of the effectiveness of benefit package structure. Actual Problems of Economics, (151), 383.
- Serikbayeva, A.K., Zhumashev, K., Janaliyeva, N.S., & Berdikulova, F.A. (2015). Physico chemical properties of mixed oxide copper ore of Kazakhstan. European Journal of Natural History, (6), 43-46.
- Bexeitova, R., Veselova, L., Kassymkanova, K.K., Jangulova, G., Baidauletova, G., Zhalgasbekov, Y., & Turekhanova, V. (2018). The problem of environmental safety of the fields of mining industrial production of arid zone of Kazakhstan. Geodesy and Cartography, 44(4), 146-155. https://doi.org/10.3846/gac.2018.4314
- Baibatsha, A.B., Bekbotayev, A.T., & Bekbotayeva, A.A. (2013). Ore-bearing strata lithology of the Zhezkazgan copper sandstones deposit. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, (1), 135-140. https://doi.org/10.5593/SGEM2013/BA1.V1/S01.019
- Stupnik, N., Kalinichenko, V., Kolosov, V., Pismennyy, S., & Shepel, A. (2014). Modeling of stopes in soft ores during ore mining. Metallurgical and Mining Industry, 6(3), 32-37.
- Verbilo, P., Karasev, M., Belyakov, N., & Iovlev, G. (2022). Experimental and numerical research of jointed rock mass anisotropy in a three-dimensional stress field. Rudarsko-Geološko-Naftni Zbornik, 37(2), 109-122. https://doi.org/10.17794/rgn.2022.2.10
- Stupnik, M., Kolosov, V., Kalinichenko, V., & Pismennyi, S. (2014). Physical modeling of waste inclusions stability during mining of complex structured deposits. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining, 25-30 https://doi.org/10.1201/b17547
- Buktukov, N.S., Gumennikov, E.S., & Mashataeva, G.A. (2019). In-situ gasification of steeply dipping coal beds with production hole making by supersonic hydraulic jets. Mining Informational and Analytical Bulletin, (9), 30-40. https://doi.org/10.25018/0236-1493-2019-09-0-30-40
- Cattenone, A., Morganti, S., Alaimo, G., & Auricchio, F. (2019). Finite element analysis of additive manufacturing based on fused deposition modeling: Distortions prediction and comparison with experimental data. Journal of Manufacturing Science and Engineering, 141(1), 011010. https://doi.org/10.1115/1.4041626
- Zhang, C., Zhao, Y., Han, P., & Bai, Q. (2022). Coal pillar failure analysis and instability evaluation methods: A short review and prospect. Engineering Failure Analysis, (138), 106344. https://doi.org/10.1016/j.engfailanal.2022.106344
- Li, X.F., Li, H.B., Liu, L.W., Liu, Y.Q., Ju, M.H., & Zhao, J. (2020). Investigating the crack initiation and propagation mechanism in brittle rocks using grain-based finite-discrete element method. International Journal of Rock Mechanics and Mining Sciences, (127), 104219. https://doi.org/10.1016/j.ijrmms.2020.104219
- Constanda, C. (2020). Direct and indirect boundary integral equation methods. New York, United States: Chapman and Hall / CRC Press, 216 p. https://doi.org/10.1201/9780367812959
- Pysmennyi, S., Peremetchyk, A., Chukharev, S., Fedorenko, S., Anastasov, D., & Tomiczek, K. (2022). The mining and geometrical methodology for estimating of mineral deposits. IOP Conference Series: Earth and Environmental Science, 1049(1), 012029. https://doi.org/10.1088/1755-1315/1049/1/012029
- De Santis, F., Renaud, V., Gunzburger, Y., Kinscher, J., Bernard, P., & Contrucci, I. (2020). In situ monitoring and 3D geomechanical numerical modelling to evaluate seismic and aseismic rock deformation in response to deep mining. International Journal of Rock Mechanics and Mining Sciences, (129), 104273. https://doi.org/10.1016/j.ijrmms.2020.104273
- Małkowski, P., & Niedbalski, Z. (2020). A comprehensive geomechanical method for the assessment of rockburst hazards in underground mining. International Journal of Mining Science and Technology, 30(3), 345-355. https://doi.org/10.1016/j.ijmst.2020.04.009
- Dyczko, A., Kamiński, P., Jarosz, J., Rak, Z., Jasiulek, D., & Sinka, T. (2021). Monitoring of roof bolting as an element of the project of the introduction of roof bolting in polish coal mines-case study. Energies, 15(1), 95. https://doi.org/10.3390/en15010095
- Fan, H., Gao, X., Yang, J., Deng, K., & Yu, Y. (2015). Monitoring mining subsidence using a combination of phase-stacking and offset-tracking methods. Remote Sensing, 7(7), 9166-9183. https://doi.org/10.3390/rs70709166
- López-Vinielles, J., Fernández-Merodo, J.A., Ezquerro, P., García-Davalillo, J.C., Sarro, R., Reyes-Carmona, C., & Herrera, G. (2021). Combining satellite insar, slope units and finite element modeling for stability analysis in mining waste disposal areas. Remote Sensing, 13(10), 2008. https://doi.org/10.3390/rs13102008
- Sepehri, M., Apel, D.B., Adeeb, S., Leveille, P., & Hall, R.A. (2020). Evaluation of mining-induced energy and rockburst prediction at a diamond mine in Canada using a full 3D elastoplastic finite element model. Engineering Geology, (266), 105457. https://doi.org/10.1016/j.enggeo.2019.105457
- Yakovlev, M.Y., Bystrov, I.D., Zingerman, K.M., & Levin, V.A. (2022). Numerical simulation of the pore pressure influence on the effective mechanical properties of rocks using CAE Fidesys. AIP Conference Proceedings, 2509(1), 020209. https://doi.org/10.1063/5.0084834
- Moldabayeva, G.Z., Suleimenova, R.T., Akhmetov, S.M., Shayakhmetova, Z.B., & Suyungariyev, G.E. (2021). The process of monitoring the current condition of oil recovery at the production fields in Western Kazakhstan. Journal of Applied Engineering Science, 19(4), 1099-1107. https://doi.org/10.5937/jaes0-30840
- Małkowski, P. (2017). Management of mining hazard monitoring. Inzy-nieria Mineralna, (2), 215-224. https://doi.org/10.29227/IM-2017-02-24
- Hnatushenko, V.V., Mozhovyi, D.K., & Vasyliev, V.V. (2017). Satellite monitoring of deforestation as a result of mining. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 94-99.
- Borshch-Komponiyets, V.I., & Makarov, A.B. (1986). Upravleniye gornym davleniem pri otrabotke moshchnykh pologikh rudnykh zalezhey. Moskva, Rossiya: Nedra, 270 s.