Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Study of cellulose additive effect on the caking properties of coal

Andrii Koveria1, Lina Kieush2, 3, Andrii Usenko3, Artem Sova3

1Dnipro University of Technology, Dnipro, Ukraine

2Montanuniversität Leoben, Leoben, Austria

3Ukrainian State University of Science and Technologies, Dnipro, Ukraine


Min. miner. depos. 2023, 17(2):1-8


https://doi.org/10.33271/mining17.02.001

Full text (PDF)


      ABSTRACT

      Purpose. The work aims to study the effect of cellulose on the caking properties of various types of coking coal used in coking blends. The change in caking abilities has been analyzed to achieve the aim using standard techniques. At the same time, the effect of biomass additives on the plastic properties of coal has been analyzed comprehensively; the optimal amount of additive for practical purposes has been determined.

      Methods. Multiple coal characteristics in the plastic stage have been studied using a dilatometric method, the enhanced swelling pressure method, the plastometric method, and the Roga index test. The first three methods make it possible to characterize the caking properties of coal; and the Roga index test characterizes its coking ability.

      Findings. It has been identified that the optimal amount of biomass additive to study the effect on the properties of coal in the plastic state is more than 5 wt. %. In the paper, experimental dependences of the 5 wt. % cellulose addition influence on the caking properties of four coal grades have been obtained. The results showed a slight decrease in caking properties in terms of swelling, swelling pressure, thickness of the plastic layer, and caking ability. Simultaneously, the most sensitive methods for assessing the effect of cellulose addition on the coal plastic properties are the dilatometric method as well as the enhanced method for the swelling pressure determination.

      Originality. A comprehensive study of the effect of pure cellulose as a component of lignocellulose biomass on the properties of different coal grades in the plastic state (i.e. caking prperteis) has been carried out. A slight change in the coal properties in the plastic state with adding 5 wt. % cellulose, decreasing caking properties, has been shown. An important, not previously reported, conclusion is that the cellulose additive does not have any noticeable effect on the physical properties of the coal charge owing to its loose structure.

      Practical implications. A slight change in the caking properties of coal has been established with the addition of 5 wt. % which is of practical importance for the preparation of coal blends, and the coke production in the cases of using additives of lignocellulosic biomass without losing its quality. Additionally, renewable additive use while obtaining fuels and reducing agents is an approach to mitigate the negative environmental impact.

      Keywords: coking coal, caking property, cellulose, coal plastic layer, swelling, swelling pressure


      REFERENCES

  1. Adilson de Castro, J., Medeiros, G.A. de, Oliveira, E.M. de, de Campos, M.F., & Nogami, H. (2020). The mini blast furnace process: An efficient reactor for green pig iron production using charcoal and hydrogen-rich gas: A study of cases. Metals, 10(11), 1501. https://doi.org/10.3390/met10111501
  2. Ahmed, H.M., Viswanathan, N., & Bjorkman, B. (2014). Composite pellets – A potential raw material for iron-making. Steel Research International, 85(3), 293-306. https://doi.org/10.1002/srin.201300072
  3. ASTM D-388-19a. (2021). Classification of coal by rank. West Conshohocken, United States, 8 p.https://doi.org/10.1520/D0388-19A
  4. ASTM D3172-13. (2013). Standard practice for proximate analysis of coal and coke. West Conshohocken, United States, 2 p.
  5. Babich, A., & Senk, D. (2019). Coke in the iron and steel industry. New Trends in Coal Conversion, 367-404.https://doi.org/10.1016/B978-0-08-102201-6.00013-3
  6. Babich, A., Senk, D., & Gudenau, H.W. (2009). Effect of coke reactivity and nut coke on blast furnace operation. Ironmaking & Steelmaking, 36(3), 222-229.https://doi.org/10.1179/174328108X378242
  7. Babich, A., Senk, D., & Fernandez, M. (2010). Charcoal behaviour by its injection into the modern blast furnace. ISIJ International, 50(1), 81-88. https://doi.org/10.2355/isijinternational.50.81
  8. Basu, P. (2010). Biomass gasification and pyrolysis. Practical design and theory. Cambridge, United State: Academic press, 376 p.
  9. Bazaluk, O., Kieush, L., Koveria, A., Schenk, J., Pfeiffer, A., Zheng, H., & Lozynskyi, V. (2022). Metallurgical coke production with biomass additives: study of biocoke properties for blast furnace and submerged arc furnace purposes. Materials, 15(3), 1147. https://doi.org/10.3390/ma15031147
  10. Campos, A.M.A., Assis, P.S., & Novack, K.M. (2018). Biomass utilization in iron and steelmaking processes. Philadelphia, United States: Association for Iron & Steel Technology.
  11. Castro Díaz, M., Zhao, H., Kokonya, S., Dufour, A., & Snape, C.E. (2012). The effect of biomass on fluidity development in coking blends using high-temperature SAOS rheometry. Energy & Fuels, 26(3), 1767-1775. https://doi.org/10.1021/ef2018463
  12. Chen, W.-H., Du, S.-W., Tsai, C.-H., & Wang, Z.-Y. (2012). Torrefied biomasses in a drop tube furnace to evaluate their utility in blast furnaces. Bioresource Technology, (111), 433-438. https://doi.org/10.1016/j.biortech.2012.01.163
  13. Chen, Z., Hu, M., Zhu, X., Guo, D., Liu, S., Hu, Z., & Laghari, M. (2015). Characteristics and kinetic study on pyrolysis of five lignocellulosic biomass via thermogravimetric analysis. Bioresource Technology, (192), 441-450. https://doi.org/10.1016/j.biortech.2015.05.062
  14. Cheng, Z., Yang, J., Zhou, L., Liu, Y., & Wang, Q. (2016). Characteristics of charcoal combustion and its effects on iron-ore sintering performance. Applied Energy, (161), 364-374. https://doi.org/10.1016/j.apenergy.2015.09.095
  15. Bondarenko, V., Lozynskyi, V., Sai, K., & Anikushyna, K. (2015). An overview and prospectives of practical application of the biomass gasification technology in Ukraine. New Developments in Mining Engineering, 27-32.https://doi.org/10.1201/b19901-6
  16. The European green deal. (2019). Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions. Retrieved from: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM:2019:640:FIN
  17. Conejo, A.N., Birat, J.-P., & Dutta, A. (2020). A review of the current environmental challenges of the steel industry and its value chain. Journal of Environmental Management, (259), 109782. https://doi.org/10.1016/j.jenvman.2019.109782
  18. Development of a low CO2 iron and steelmaking integrated process route for a sustainable European steel industry. (2018). Retrieved from: https://cordis.europa.eu/project/id/654013/reporting
  19. Diez, M.A., Alvarez, R., & Fernández, M. (2012). Biomass derived products as modifiers of the rheological properties of coking coals. Fuel, (96), 306-313. https://doi.org/10.1016/j.fuel.2011.12.065
  20. DSTU 3472:2015. (2015). Brown coal, hard coal and anthracite. Classification. Standard of Ukraine. Kyiv, Ukraine.
  21. Echterhof, T. (2021). Review on the use of alternative carbon sources in EAF steelmaking. Metals, 11(2), 222. https://doi.org/10.3390/met11020222
  22. Elgarahy, A.M., Hammad, A., El-Scherif, D.M., Abouzid, M., Gaballah, M.S., & Elwakeel, K.Z. (2021). Thermochemical conversion strategies of biomass to biofuels, techno-economic and bibliometric analysis: A conceptual review. Journal of Environmental Chemical Engineering, 9(6), 106503.https://doi.org/10.1016/j.jece.2021.106503
  23. El-Tawil, A.A., Björkman, B., Lundgren, M., Robles, A., & Sundqvist Ökvist, L. (2021). Influence of bio-coal properties on carbonization and bio-coke reactivity. Metals, 11(11), 1752. https://doi.org/10.3390/met11111752
  24. Fan, Z., & Friedmann, S.J. (2021). Low-carbon production of iron and steel: Technology options, economic assessment, and policy. Joule, 5(4), 829-862. https://doi.org/10.1016/j.joule.2021.02.018
  25. Feliciano-Bruzual, C. (2014). Charcoal injection in blast furnaces (Bio-PCI): CO2 reduction potential and economic prospects. Journal of Materials Research and Technology, 3(3), 233-243. https://doi.org/10.1016/j.jmrt.2014.06.001
  26. Fernández, A.M., Barriocanal, C., Díez, M.A., & Alvarez, R. (2009). Influence of additives of various origins on thermoplastic properties of coal. Fuel, 88(12), 2365-2372. https://doi.org/10.1016/j.fuel.2008.11.029
  27. Fit for 55. (2022). Retrieved from: https://www.consilium.europa.eu/en/policies/green-deal/fit-for-55-the-eu-plan-for-a-green-transition/
  28. Florentino-Madiedo, L., Casal, D., Díaz-Faes, E., & Barriocanal, C. (2017). Effect of sawdust addition on coking pressure produced by two low vol bituminous coals. Journal of Analytical and Applied Pyrolysis, (127), 369-376.https://doi.org/10.1016/j.jaap.2017.07.013
  29. Flores, B.D., Flores, I.V., Guerrero, A., Orellana, D.R., Pohlmann, J.G., Diez, M.A., & Vilela, A.C.F. (2017). Effect of charcoal blending with a vitrinite rich coking coal on coke reactivity. Fuel Processing Technology, (155), 97-105. https://doi.org/10.1016/j.fuproc.2016.04.012
  30. Fraga, M., Flores, B., Osório, E., & Vilela, A. (2020). Evaluation of the thermoplastic behavior of charcoal, coal tar and coking coal blends. Journal of Materials Research and Technology, 9(3), 3406-3410. https://doi.org/10.1016/j.jmrt.2020.01.076
  31. Gan, M., Li, Q., Ji, Z., Fan, X., Lv, W., Chen, X., & Jiang, T. (2017). Influence of surface modification on combustion characteristics of charcoal and its performance on emissions reduction in iron ore sintering. ISIJ International, 57(3), 420-428. https://doi.org/10.2355/isijinternational.ISIJINT-2016-527
  32. Guerrero, A., Diez, M.A., & Borrego, A.G. (2015). Influence of charcoal fines on the thermoplastic properties of coking coals and the optical properties of the semicoke. International Journal of Coal Geology, (147-148), 105-114. https://doi.org/10.1016/j.coal.2015.06.013
  33. Haidai, O.A., Pavlychenko, A.V., Koveria, A.S., Ruskykh, V.V., & Lampika, T.V. (2022). Determination of granulometric composition of technogenic raw materials for producing composite fuel. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 52-58. https://doi.org/10.33271/nvngu/2022-4/052
  34. Hard coal-determination of caking Power-Roga test. (1974). Geneva, Switzerland: International Organization for Standardization.
  35. Hu, Q., Yao, D., Xie, Y., Zhu, Y., Yang, H., Chen, Y., & Chen, H. (2018). Study on intrinsic reaction behavior and kinetics during reduction of iron ore pellets by utilization of biochar. Energy Conversion and Management, (158), 1-8.https://doi.org/10.1016/j.enconman.2017.12.037
  36. ISO 7404-2:2009. (2009). Methods for the petrographic analysis of coals-part 2: Methods of preparing coal samples. Geneva, Switzerland: International Organization for Standardization.
  37. ISO 7404-3:2009. (2009). Methods for the petrographic analysis of coals-part 3: Method of determining maceral group composition. Geneva, Switzerland: International Organization for Standardization.
  38. ISO 7404-5:2009. (2009). Methods for the petrographic analysis of coals-part 5: Method of determining microscopically the reflectance of vitrinite. (2009). Geneva, Switzerland: International Organization for Standardization.
  39. Jeong, H.M., Seo, M.W., Jeong, S.M., Na, B.K., Yoon, S.J., Lee, J.G., & Lee, W.J. (2014). Pyrolysis kinetics of coking coal mixed with biomass under non-isothermal and isothermal conditions. Bioresource Technology, (155), 442-445. https://doi.org/10.1016/j.biortech.2014.01.005
  40. Jha, G., & Soren, S. (2017). Study on applicability of biomass in iron ore sintering process. Renewable and Sustainable Energy Reviews, (80), 399-407. https://doi.org/10.1016/j.rser.2017.05.246
  41. Kieush, L., Boyko, M., Koveria, A., Yaholnyk, M., & Poliakova, N. (2020). Manganese sinter production with wood biomass application. Key Engineering Materials, (844), 124-134. https://doi.org/10.4028/www.scientific.net/KEM.844.124
  42. Kieush, L., Koveria, A., Boyko, M., Yaholnyk, M., Hrubiak, A., Molchanov, L., & Moklyak, V. (2022). Influence of biocoke on iron ore sintering performance and strength properties of sinter. Mining of Mineral Deposits, 16(2), 55-63. https://doi.org/10.33271/mining16.02.055
  43. Kieush, L., Koveria, A., Schenk, J., Rysbekov, K., Lozynskyi, V., Zheng, H., & Matayev, A. (2022). Investigation into the effect of multi-component coal blends on properties of metallurgical coke via petrographic analysis under industrial conditions. Sustainability, 14(16), 9947. https://doi.org/10.3390/su14169947
  44. Kieush, L. (2019). Coal pyrolysis products utilisation for synthesis of carbon nanotubes. Petroleum & Coal, (61), 461-466.
  45. Kieush, L., Schenk, J., Pfeiffer, A., Koveria, A., Rantitsch, G., & Hopfinger, H. (2022). Investigation on the influence of wood pellets on the reactivity of coke with CO2 and its microstructure properties. Fuel, (309), 122151.https://doi.org/10.1016/j.fuel.2021.122151
  46. Kokonya, S., Castro-Díaz, M., Barriocanal, C., & Snape, C.E. (2013). An investigation into the effect of fast heating on fluidity development and coke quality for blends of coal and biomass. Biomass and Bioenergy, (56), 295-306.https://doi.org/10.1016/j.biombioe.2013.05.026
  47. Koskela, Suopajärvi, Mattila, Uusitalo, & Fabritius. (2019). Lignin from bioethanol production as a part of a raw material blend of a metallurgical coke. Energies, 12(8), 1533. https://doi.org/10.3390/en12081533
  48. Koveria, A. (2012). Development of the express method for assessment of the technological properties of coals and their blends by the indices of dynamics of swelling pressure and prediction of coke quality. PhD Thesis. Dnipro, Ukraine: National Metallurgical Academy of Ukraine.
  49. Koveria, A., Kieush, L., Boyko, M., Yaholnyk, M., & Poliakova, N. (2021). Production of iron ore pellets by utilization of sunflower husks. Acta Metallurgica Slovaca, 27(4), 167-171. https://doi.org/10.36547/ams.27.4.1052
  50. Koveria, A., Kieush, L., Svietkina, O., & Perkov, Y. (2020). Metallurgical coke production with biomass additives. Part 1. A review of existing practices. Canadian Metallurgical Quarterly, 59(4), 417-429.https://doi.org/10.1080/00084433.2021.1916293
  51. MacPhee, J.A., Gransden, J.F., Giroux, L., & Price, J.T. (2009). Possible CO2 mitigation via addition of charcoal to coking coal blends. Fuel Processing Technology, 90(1), 16-20. https://doi.org/10.1016/j.fuproc.2008.07.007
  52. Marcos, M., Bianco, L., Cirilli, F., Reichel, T., Baracchini, G., & Echterhof, T. (2019). Biochar for a sustainable EAF steel production (GREENEAF2). Brussel, Belgium: European Commission, Directorate-General for Research and Innovation-Publications Office.
  53. Meijer, K., Denys, M., Lasar, J., Birat, J.-P., Still, G., & Overmaat, B. (2009). ULCOS: Ultra-low CO2 steelmaking. Ironmaking & Steelmaking, 36(4), 249-251. https://doi.org/10.1179/174328109X439298
  54. Mochizuki, Y., Naganuma, R., & Tsubouchi, N. (2018). Influence of inherently present oxygen-functional groups on coal fluidity and coke strength. Energy & Fuels, 32(2), 1657-1664. https://doi.org/10.1021/acs.energyfuels.7b03774
  55. Moghtaderi, B., Meesri, C., & Wall, T.F. (2004). Pyrolytic characteristics of blended coal and woody biomass. Fuel, 83(6), 745-750. https://doi.org/10.1016/j.fuel.2003.05.003
  56. Mohammad, S., Patra, S., & Harichandan, B. (2023). Reductants in iron ore sintering: A critical review. Fuel, (332), 126194. https://doi.org/10.1016/j.fuel.2022.126194
  57. Montiano, M.G., Díaz-Faes, E., & Barriocanal, C. (2016). Effect of briquette composition and size on the quality of the resulting coke. Fuel Processing Technology, (148), 155-162. https://doi.org/10.1016/j.fuproc.2016.02.039
  58. Montiano, M.G., Díaz-Faes, E., Barriocanal, C., & Alvarez, R. (2014). Influence of biomass on metallurgical coke quality. Fuel, (116), 175-182. https://doi.org/10.1016/j.fuel.2013.07.070
  59. Mousa, A., Ahmed, H., & Viswanathan, N. (2016). Recent trends in ironmaking blast furnace technology to mitigate CO2 emissions: Tuyeres injection. In Ironmaking and Steelmaking Processes: Greenhouse Emissions, Control and Reduction (pp. 173-197). Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-319-39529-6_10
  60. Mousa, E., Wang, C., Riesbeck, J., & Larsson, M. (2016). Biomass applications in iron and steel industry: An overview of challenges and opportunities. Renewable and Sustainable Energy Reviews, (65), 1247-1266. https://doi.org/10.1016/j.rser.2016.07.061
  61. Najmi, N.H., Yunos, N.F.D.M., & Othman, N.K. (n.d.). Agricultural waste as iron reductant for producing metallic iron in steelmaking. Journal of Engineering and Applied Sciences, 11(6), 9770-9775.
  62. Ng, K.W., Giroux, L., MacPhee, T., & Todoschuk, T. (2012). Incorporation of charcoal in coking coal blend – A study of the effects on carbonization conditions and coke quality. In Proceedings of the AISTech 2012 – Proceedings of the Iron & Steel Technology Conference (pp. 225-236). Atlanta, United States.
  63. Niesler, M., Stecko, J., Stelmach, S., & Kwiecińska-Mydlak, A. (2021). Biochars in iron ores sintering process: Effect on sinter quality and emission. Energies, 14(13), 3749. https://doi.org/10.3390/en14133749
  64. Nwachukwu, C.M., Wang, C., & Wetterlund, E. (2021). Exploring the role of forest biomass in abating fossil CO2 emissions in the iron and steel industry – The case of Sweden. Applied Energy, (288), 116558. https://doi.org/10.1016/j.apenergy.2021.116558
  65. Panwar, N., Gajera, B., Jain, S., & Salvi, B. (2020). Thermogravimetric studies on co-pyrolysis of raw/torrefied biomass and coal blends. Waste Management & Research: The Journal for a Sustainable Circular Economy, 38(11), 1259-1268. https://doi.org/10.1177/0734242X19896624
  66. Paris Agreement to the United Nations Framework Convention on Climate Change. (2015). Paris, France.
  67. Park, D.K., Kim, S.D., Lee, S.H., & Lee, J.G. (2010). Co-pyrolysis characteristics of sawdust and coal blend in TGA and a fixed bed reactor. Bioresource Technology, 101(15), 6151-6156. https://doi.org/10.1016/j.biortech.2010.02.087
  68. Praes, G.E., Arruda, J.D. de, Lemos, L.R., & Tavares, R.P. (2019). Assessment of iron ore pellets production using two charcoals with different content of materials volatile replacing partially anthracite fines. Journal of Materials Research and Technology, 8(1), 1150-1160. https://doi.org/10.1016/j.jmrt.2018.09.003
  69. Qu, T., Guo, W., Shen, L., Xiao, J., & Zhao, K. (2011). Experimental study of biomass pyrolysis based on three major components: Hemicellulose, cellulose, and lignin. Industrial & Engineering Chemistry Research, 50(18), 10424-10433. https://doi.org/10.1021/ie1025453
  70. Rejdak, M., Bigda, R., & Wojtaszek, M. (2020). Use of alternative raw materials in coke-making: New insights in the use of lignites for blast furnace coke production. Energies, 13(11), 2832. https://doi.org/10.3390/en13112832
  71. Rejdak, M., Wojtaszek-Kalaitzidi, M., Gałko, G., Mertas, B., Radko, T., Baron, R., & Kalaitzidis, S. (2022). A study on bio-coke production – the influence of bio-components addition on coke-making blend properties. Energies, 15(18), 6847. https://doi.org/10.3390/en15186847
  72. Scarpinella, C.A., Cyro, T., Tagusagawa, S.Y., Mourao, M.B., & Lenz e Silva, F.B. (2021). Charcoal ironmaking: A contribution for CO2 mitigation. Metals and Materials Processing in a Clean Environment, 109-121.
  73. Seo, M.W., Jeong, H.M., Lee, W.J., Yoon, S.J., Ra, H.W., Kim, Y.K., & Jeong, S.M. (2020). Carbonization characteristics of biomass/coking coal blends for the application of bio-coke. Chemical Engineering Journal, (394), 124943. https://doi.org/10.1016/j.cej.2020.124943
  74. Solar, J., Caballero, B.M., Barriocanal, C., Lopez-Urionabarrenechea, A., & Acha, E. (2021). Impact of the addition of pyrolysed forestry waste to the coking process on the resulting green biocoke. Metals, 11(4), 613. https://doi.org/10.3390/met11040613
  75. Sommerfeld, M., & Friedrich, B. (2021). Replacing fossil carbon in the production of ferroalloys with a focus on bio-based carbon: A review. Minerals, 11(11), 1286. https://doi.org/10.3390/min11111286
  76. Steel’s contribution to a low carbon future and climate resilient societies – World steel position paper. (2017). Retrieved from: https://www.worldsteel.org/en/dam/jcr:66fed386-fd0b-485e-aa23-b8a5e7533435/Position_paper_climate_2018.pdf
  77. Suopajärvi, H., Umeki, K., Mousa, E., Hedayati, A., Romar, H., Kemppainen, A., & Fabritius, T. (2018). Use of biomass in integrated steelmaking – Status quo, future needs and comparison to other low-CO2 steel production technologies. Applied Energy, (213), 384-407. https://doi.org/10.1016/j.apenergy.2018.01.060
  78. Surup, G.R., Trubetskaya, A., & Tangstad, M. (2020). Charcoal as an alternative reductant in ferroalloy production: A review. Processes, 8(11), 1432.https://doi.org/10.3390/pr8111432
  79. Surup, G., Vehus, T., Eidem, P.-A., Trubetskaya, A., & Nielsen, H.K. (2019). Characterization of renewable reductants and charcoal-based pellets for the use in ferroalloy industries. Energy, (167), 337-345. https://doi.org/10.1016/j.energy.2018.10.193
  80. Full list of projects co‐financed by the research fund for coal and steel of the European Union. (2020). Retrieved from: https://ec.europa.eu/info/sites/default/files/research_and_innovation/funding/documents/synopsis_of_rfcs_projects_2016-2019.pdf
  81. Tsubouchi, N., Mochizuki, Y., Naganuma, R., Kamiya, K., Nishio, M., Ono, Y., & Uebo, K. (2016). Influence of inherent oxygen species on the fluidity of coal during carbonization. Energy & Fuels, 30(3), 2095-2101. https://doi.org/10.1021/acs.energyfuels.5b02914
  82. Ulloa, C.A., Gordon, A.L., & García, X.A. (2009). Thermogravimetric study of interactions in the pyrolysis of blends of coal with radiata pine sawdust. Fuel Processing Technology, 90(4), 583-590. https://doi.org/10.1016/j.fuproc.2008.12.015
  83. Vamvuka, D., Pasadakis, N., Kastanaki, E., Grammelis, P., & Kakaras, E. (2003). Kinetic modeling of coal/agricultural by-product blends. Energy & Fuels, 17(3), 549-558. https://doi.org/10.1021/ef020179u
  84. Vuthaluru, H.B. (2004). Thermal behaviour of coal/biomass blends during co-pyrolysis. Fuel Processing Technology, 85(2-3), 141-155. https://doi.org/10.1016/S0378-3820(03)00112-7
  85. Wang, C., Wei, W., Mellin, P., Yang, W., Hultgren, A., & Salman, H. (2013). Utilization of biomass for blast furnace in Sweden – Report I: Biomass availability and upgrading technologies. 97 p.
  86. Wang, S., Dai, G., Yang, H., & Luo, Z. (2017). Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review. Progress in Energy and Combustion Science, (62), 33-86. https://doi.org/10.1016/j.pecs.2017.05.004
  87. Wei, R., Zhang, L., Cang, D., Li, J., Li, X., & Xu, C.C. (2017). Current status and potential of biomass utilization in ferrous metallurgical industry. Renewable and Sustainable Energy Reviews, (68), 511-524. https://doi.org/10.1016/j.rser.2016.10.013
  88. Wu, Z., Wang, S., Zhao, J., Chen, L., & Meng, H. (2014). Synergistic effect on thermal behavior during co-pyrolysis of lignocellulosic biomass model components blend with bituminous coal. Bioresource Technology, (169), 220-228. https://doi.org/10.1016/j.biortech.2014.06.105
  89. Yang, H., Yan, R., Chen, H., Lee, D.H., & Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86(12-13), 1781-1788. https://doi.org/10.1016/j.fuel.2006.12.013
  90. Yang, H., Yan, R., Chen, H., Zheng, C., Lee, D.H., & Liang, D.T. (2006). In-depth investigation of biomass pyrolysis based on three major components: Hemicellulose, cellulose and lignin. Energy & Fuels, 20(1), 388-393. https://doi.org/10.1021/ef0580117
  91. Yu, S., Wang, L., Li, Q., Zhang, Y., & Zhou, H. (2022). Sustainable carbon materials from the pyrolysis of lignocellulosic biomass. Materials Today Sustainability, (19), 100209. https://doi.org/10.1016/j.mtsust.2022.100209
  92. Yunos, N.F.M., Zaharia, M., Idris, M.A., Nath, D., Khanna, R., & Sahajwalla, V. (2012). Recycling agricultural waste from palm shells during electric arc furnace steelmaking. Energy & Fuels, 26(1), 278-286. https://doi.org/10.1021/ef201184h
  93. Yustanti, E., Wardhono, E.Y., Mursito, A.T., & Alhamidi, A. (2021). Types and composition of biomass in biocoke synthesis with the coal blending method. Energies, 14(20), 6570. https://doi.org/10.3390/en14206570
  94. Zandi, M., Martinez-Pacheco, M., & Fray, T.A.T. (2010). Biomass for iron ore sintering. Minerals Engineering, 23(14), 1139-1145. https://doi.org/10.1016/j.mineng.2010.07.010
  95. Zhang, X., Jiao, K., Zhang, J., & Guo, Z. (2021). A review on low carbon emissions projects of steel industry in the World. Journal of Cleaner Production, (306), 127259. https://doi.org/10.1016/j.jclepro.2021.127259
  96. Лицензия Creative Commons