Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Ensuring a safe geomechanical state of the rock mass surrounding the mine workings in the Karaganda coal basin, Kazakhstan

Nurbek Zholmagambetov1, Elvira Khalikova1, Vladimir Demin1, Anna Balabas1, Rabbel Abdrashev2, Saule Suiintayeva2

1Abylkas Saginov Karaganda Technical University, Karaganda, Kazakhstan

2K. Zhubanov Aktobe Regional University, Aktobe, Kazakhstan

Min. miner. depos. 2023, 17(1):74-83

Full text (PDF)


      Purpose. The research purpose is to determine the instability zones in the host rocks and the dynamics of propagation of active fracturing zones to ensure the stability of the rock mass surrounding the mine workings.

      Methods. The research uses a set of analytical and experimental studies to determine the dynamics of the deformation process development in the coal-rock mass surrounding the mine workings. Mathematical modeling of the stress-strain state of the rock mass surrounding the active extraction workings is performed using the numerical method of finite elements in modern AN-SYS, Mergel and KMS-III software products.

      Findings. The influence has been studied of the mine working section shape and the coal seam dip angle on the value of the maximum stresses that arise in the rock mass when the mine working is fastened with the roof-bolt support. The instability zones in the host rocks and the dynamics of propagation of active fracturing zones have been determined both ahead of the front of the conducted mine working and on its sides for rocks of different strength.

      Originality. For the conditions of the Karaganda coal basin, the dependence of a change in the development of conventional inelastic deformation zones (CIDZ) on the host rock strength has been revealed. The influence of the coal seam dip angle on the dynamics of stratifications around preparatory working has also been substantiated. In addition, new data have been obtained on the influence of the roof rock strength on the stratification of the rock mass surrounding the mine working.

      Practical implications. By determining instability zones in the host rocks and the dynamics of propagation of active fracturing zones, it is possible to control geomechanical processes in the border rock mass of a mine working and influence it in order to prevent the occurrence of negative rock pressure manifestations. The data obtained are the basis for the development of recommendations on the use of roof-bolting technology for fastening extraction workings to ensure their stability and reduce the cost of their operation.

      Keywords: geological faults, mine working, coal, mine, deformations, rock, roof bolt


  1. Mustapaevich, D.K., & Mnajatdin, M.D. (2021). Properties of coal, processes in coal mining companies, methods of coal mining in the World. Journal NX, 7(10), 231-236.
  2. Tao, M., Cheng, W., Nie, K., Zhang, X., & Cao, W. (2022). Life cycle assessment of underground coal mining in China. Science of The Total Environment, (805), 150231.
  3. Baimukhanbetova, E., Onaltayev, D., Daumova, G., Amralinova, B., & Amangeldiyev, A. (2020). Improvement of in-formational technologies in ecology. E3S Web of Conferences, (159), 01008.
  4. Budi, G., Rao, K.N., & Mohanty, P. (2023). Field and numerical modelling on the stability of underground strata in longwall workings. Energy Geoscience, 4(1), 1-12.
  5. Xiong, Y., Kong, D., Wen, Z., Wu, G., & Liu, Q. (2022). Analysis of coal face stability of lower coal seam under repeated mining in close coal seams group. Scientific Reports, 12(1), 1-14.
  6. Nehrii, S., Nehrii, T., Zolotarova, O., & Volkov, S. (2021). Investigation of the geomechanical state of soft adjoining rocks under protective constructions. Rudarsko-Geološko-Naftni Zbornik, 36(4), 61-71.
  7. Lama, B., & Momayez, M. (2023). Review of non-destructive methods for rock bolts condition evaluation. Mining, 3(1), 106-120.
  8. Zhao, B., Wen, G., Ma, Q., Sun, H., Yan, F., & Nian, J. (2022). Distribution characteristics of pulverized coal and stress-gas pressure-temperature response laws in coal and gas outburst under deep mining conditions. Energy Science & Engineering, 10(7), 2205-2223.
  9. Bazaluk, O., Rysbekov, K., Nurpeisova, M., Lozynskyi, V., Kyrgizbayeva, G., & Turumbetov, T. (2022). Integrated monitoring for the rock mass state during large-scale subsoil development. Frontiers in Environmental Science, (10), 852591.
  10. Wang, G., Ren, H., Zhao, G., Zhang, D., Wen, Z., Meng, L., & Gong, S. (2022). Research and practice of intelligent coal mine technology systems in China. International Journal of Coal Science & Technology, 9(1), 24.
  11. Bondarenko, V.I., Kharin, Ye.N., Antoshchenko, N.I., & Gasyuk, R.L. (2013). Basic scientific positions of forecast of the dynamics of methane release when mining the gas bearing coal seams. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 24-30.
  12. Zheng, H., & Matayev, A. (2022). Investigation into the effect of multi-component coal blends on properties of metallurgical coke via petrographic analysis under industrial conditions. Sustainability, 14(16), 9947.
  13. Khalikova, E, Diomin, V, Diomina, T, & Zhurov, V. (2019). Studying coal seam bedding tectonic breach impact on supporting parameters of mine workings with roof bolting. Scientific Bulletin of the National Mining University, (5), 16-21.
  14. Tsay, B.N., & Sudarikov, A.E. (2007). Mekhanika podzemnykh sooruzheniy. Karaganda, Kazakhstan: KarGTU, 159 s.
  15. Abdullayev, S.S., Bondar, I.S., Bakyt, G.B., Ashirbayev, G.K., Budiukin, A.M., & Baubekov, Y.Y. (2021). Interaction of frame structures with rolling stock. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 1(445), 22-28.
  16. Taran, I.A. (2012). Laws of power transmission on branches of double-split hydrostatic mechanical transmissions. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 69-75.
  17. Taran, I. (2012). Interrelation of circular transfer ratio of double-split transmissions with regulation characteristic in case of planetary gear output. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (3), 78-85.
  18. Abdullayev, S.S., Bakyt, G.B., Aikumbekov, M.N., Bondar, I.S., & Auyesbayev, Y.T. (2021). Determination of natural modes of railway overpasses. Journal of Applied Research and Technology, 19(1), 1-10.
  19. Algiev, S., Turegeldinova, A., & Chowdhury, D. (2013). Knowledge share incentive: Exploring opportunities in railway service provider in Kazakhstan. Actual Problems of Economics, 141(3), 205-209.
  20. Bakyt, G., Abdullayev, S., Suleyeva, N., Yelshibekov, A., Seidemetova, Z., & Sadvakassova, Z. (2020). Simulation of dynamic processes of interaction of car and railway track during train passage of curved sections of the track. Transport Problems, 15(2), 45-70.
  21. Huang, W., Liu, S., Gao, M., Hou, T., Wang, X., Zhao, T., & Xie, Z. (2022). Improvement of reinforcement performance and engineering application of small coal pillars arranged in double roadways. Sustainability, 15(1), 292.
  22. Arystan, I.D., Baizbaev, M.B., Mataev, A.K., Abdieva L.M. Bogzhanova, Zh.K., & Abdrashev, R.M. (2020). Selection and justification of technology for fixing preparatory workings in unstable massifs on the example of the mine 10 years of in-dependence of Kazakhstan. Ugol, (6), 10-14.
  23. Ivakhnenko, O., Aimukhan, A., Kenshimova, A., Mullagaliyev, F., Akbarov, E., Mullagaliyeva, L., & Almukhametov, A. (2017). Advances in coalbed methane reservoirs integrated characterization and hydraulic fracturing for improved gas recovery in Karaganda Coal Basin, Kazakhstan. Energy Procedia, (125), 477-485.
  24. Zhurov, V.V. (2010). Sovershenstvovaniye metodiki rascheta parametrov krepleniya vyrabotok s uchetom gornotekhnologicheskikh faktorov. Dissertatsiya na soiskaniye uchenoy stepeni kandidata tekhnicheskikh nauk. Karaganda, Kazakhstan: KarGTU, 115 s
  25. Doan, D.V., & Xia, B. (2019). Control technology for coal roadway with mudstone interlayer in Nui Beo coal mine. Geo-Mate Journal, 17(60), 259-266.
  26. Demin, V.F., Demina, T.V., Kaynazarov, A.S., & Kaynazarova, A.S. (2018). Evaluation of the workings technological schemes effectiveness to increase the stability of their contours. Sustainable Development of Mountain Territories, 10(4), 606-617.
  27. Demin, V.F., Fofanov, O.B., Demina, T.V., & Yavorskiy, V.V. (2017). Deflected mode of marginal rock massif around mine working boundaries depending on anchoring parameters. IOP Conference Series: Materials Science and Engineering, 177(1), 012042.
  28. Hu, Q., Cui, X., Liu, W., Feng, R., Ma, T., & Li, C. (2022). Quantitative and dynamic predictive model for mining-induced movement and deformation of overlying strata. Engineering Geology, (311), 106876.
  29. Imashev, A., Suimbayeva, A., Zeitinova, S., Zeitinova, S., Zhunusbekova, G., & Mussin, A. (2022). Research into stress-strain state of the mass under open pit with a change in the open-pit bottom width. Mining of Mineral Deposits, 16(3), 61-66.
  30. Imashev, A.Z., Sudarikov, A.E., Musin, A.A., Suimbayeva, A.M., & Asan, S.Y. (2021). Improving the quality of blasting indicators by studying the natural stress field and the impact of the blast force on the rock mass. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 4(448), 30-35.
  31. Bondarenko, V., Symаnоvych, G., & Kоvаl, О. (2012). Thе mеchаnіsm оf оvеr-cоаl thіn-lаyеrеd mаssіf dеfоrmаtіоn оf wеаk rоcks іn а lоngwаll. Gеоmеchаnіcаl Prоcеssеs Durіng Undеrgrоund Mіnіng, 41-44. https://dоі.оrg/10.1201/b13157-8
  32. Shashenko, A., Gapieiev, S., & Solodyankin, A. (2009). Numerical simulation of the elastic-plastic state of rock mass around horizontal workings. Archives of Mining Sciences, 54(2), 341-348.
  33. Majkherchik, T., Gajko, G.I., & Malkowski, P. (2002). Deformation process around a heading investigation when front of longwall face advancing. Ugol, (11), 27-29.
  34. Mendygaliyev, A., Arshamov, Y., Selezneva, V., Yazikov, E., & Bekbotayeva, A. (2021). Prospects for application of multi-spectral earth sensing data in forecasting and searching for reservoir-infiltration uranium deposits. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 2(446), 90-97.
  35. Arystan, I.D., Nemova, N.A., Baizbaev, M.B., & Mataev, A.K. (2021). Efficiency of modified concrete in lining in under-ground structures. IOP Conference Series: Earth and Environmental Science, 773(1), 012063.
  36. Sultanov, M.G., Mataev, A.K., Kaumetova, D.S., Abdrashev R.M. Kuantay, A.S., & Orynbayev, B.M. (2020). Development of the choice of types of support parameters and technologies for their construction at the Voskhod field. Ugol, (10), 17-21.
  37. Drizhd, N., Mussin, R., & Alexandrov, A. (2019). Improving the technology of hydraulic impact based on accounting previously treated wells. IOP Conference Series: Earth and Environmental Science, 272(2), 022031.
  38. Khussan, B., Abdiev, A., Bitimbayev, M., Kuzmin, S., Issagulov, S., & Matayev, A. (2022). Substantiation and development of innovative container technology for rock mass lifting from deep open pits. Mining of Mineral Deposits, 16(4), 87-95.
  39. Bаtyrkhаnоvа, А, Tоmіlоv А, Zhumаbеkоvа, А, Аbеkоv, U, & Dеmіn, V. (2019). Developing technological schemes of driving working with controlled resistance of contours. Scientific Bulletin of the National Mining University, (3), 22-28.
  40. Smoliński, A., Malashkevych, D., Petlovanyi, M., Rysbekov, K., Lozynskyi, V., & Sai, K. (2022). Research into impact of leaving waste rocks in the mined-out space on the geomechanical state of the rock mass surrounding the longwall face. Energies, 15(24), 9522.
  41. Sotskov, V., & Saleev, I. (2013). Investigation of the rock massif stress strain state in conditions of the drainage drift over-working. Annual Scientific-Technical Collection – Mining of Mineral Deposits, 197-201.
  42. Demin, V.F., Isabek, T.K., & Nemova, N.A. (2021). Study of deformation manifestations in the excavation working floor when it is supported by roof bolting. IOP Conference Series: Earth and Environmental Science, 773(1), 012005.
  43. Yang, H., Han, C., Zhang, N., Pan, D., & Xie, Z. (2020). Research and application of low density roof support technology of rapid excavation for coal roadway. Geotechnical and Geological Engineering, (38), 389-401.
  44. Wu, Q., Liu, H., Dai, B., Cheng, L., Li, D., & Qin, P. (2023). Influence of base-angle bolt support parameters and different sections on overall stability of a roadway under a deeply buried high stress environment based on numerical simulation. Sustainability, 15(3), 2496.
  45. Yang, H., Han, C., Zhang, N., Sun, Y., Pan, D., & Sun, C. (2020). Long high-performance sustainable bolt technology for the deep coal roadway roof: A case study. Sustainability, 12(4), 1375.
  46. Imashev, A.Zh., Suimbayeva, A.M., Abdibaitov, Sh.A., Musin, A.A., & Asan, S.Yu. (2020). Justification of the optimal cross-sectional shape of the mine workings in accordance with the rating classification. Ugol, (6), 4-9.
  47. Steflyuk, Yu.Yu., Demina, T.V., & Karatayev, A.D. (2015). Programma dlya EVM dlya modelirovaniya napryazhenno-deformirovannogo sostoyaniya massiva vblizi gornykh vyrabotok “Mergel” (programma dlya EVM). Svidetelstvo o gosudarstvennoy registratsii prav na obyekt intellektualnoy sobstvennosti #1547.
  48. Son, D.V., Bakhtybayeva, A.S., & Bakhtybayev, N.B. (2013). Kompyuternaya programma dlya EVM (“KMS-III” kompleks modelirovaniya smeshcheniy – shakhtnyy). Prava na obyekt intellektualnoy sobstvennosti #516 ot 04 maya 2013.
  49. Matayev, A., Musin, R., Abdrashev, R., Kuantay, A.S., & Kuandykova, A. (2021). Substantiating the optimal type of mine working fastening based on mathematical modeling of the stress condition of underground structures. Scientific Bulletin of the National Mining University, (3). 57-63.
  50. Altounyan, Р. (2008). Ankernoye krepleniye na shakhtakh Karagandinskogo basseyna. Rock Mechanics Technology. Prezentatsiya. ArselorMittal, 35 s.
  51. Sementsov, V.V., Osminin, D.V., & Nifanov, E.V. (2021). Ustoychivost vyemochnykh gornykh vyrabotok pri otrabotke plastov s trudnoobrushayushchimisya krovlyami. Vestnik Nauchnogo Tsentra VostNII po Promyshlennoy i Ekologicheskoy Bezopasnosti, (3), 14-25.
  52. Jiang, L., Sainoki, A., Mitri, H.S., Ma, N., Liu, H., & Hao, Z. (2016). Influence of fracture-induced weakening on coal mine gateroad stability. International Journal of Rock Mechanics and Mining Sciences, (88), 307-317.
  53. Wang, H., Jiang, Y., Zhao, Y., Zhu, J., & Liu, S. (2013). Numerical investigation of the dynamic mechanical state of a coal pillar during longwall mining panel extraction. Rock Mechanics and Rock Engineering, (46), 1211-1221.
  54. Meshkov, A.A., Popov, A.L., Popova, Yu.V., Smolin, A.V., & Shabarov, A.N. (2020). Prognoz opasnykh yavleniy v predelakh rabochikh ugolnykh plastov dlya shakhtnogo polya im. V.D. Yalevskogo. Gornyy Informatsionno-Analiticheskiy Byulleten’, (2), 22-33.
  55. Artemyev, V.B., Korshunov, G.I., & Loginov, A.K. (2011). Gornaya geomekhanika. Sankt-Peterburg, Rossiya: Nauka, 102 s.
  56. Rozenbaum, M.A., & Demekhin, D N. (2014). Deformational criteria for the stability of roof rocks and rock bolts. Journal of Mining Science, (50), 260-264.
  57. Valiev, N.G., Berkovich, V.Kh., Propp, V.D., & Kokarev, K.V. (2018). Problemy otrabotki predokhranitelnykh tselikov pri ekspluatatsii rudnykh mestorozhdeniy. Izvestiya Vuzov. Gornyy Zhurnal, (2), 4-9.
  58. Shen, W.L., Bai, J.B., Li, W.F., & Wang, X.Y. (2018). Prediction of relative displacement for entry roof with weak plane under the effect of mining abutment stress. Tunnelling and Underground Space Technology, (71), 309-317.
  59. Лицензия Creative Commons