Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Improving a technique to calculate strength of cylindrical rock samples in terms of uniaxial compression

Leonid Vasyliev1, Mykola Malich2, Dmytro Vasyliev1, Volodymyr Katan3, Zahar Rizo1

1Institute of Geotechnical Mechanics named by N. Poljakov of National Academy of Sciences of Ukraine, Dnipro, Ukraine

2Ukrainian State University of Science and Technology, Dnipro, Ukraine

3Oles Honchar Dnipro National University, Dnipro, Ukraine


Min. miner. depos. 2023, 17(1):43-50


https://doi.org/10.33271/mining17.01.043

Full text (PDF)


      ABSTRACT

      Purpose is to improve analytical technique to calculate strength of cylindrical rock samples taking into consideration standard horizontal stresses.

      Methods. Mathematical modeling of cylindrical rock sample breakage under the truncated-wedge destruction was performed taking into consideration the standard horizontal stresses using four experimental characteristics (i.e. k being shear strength; fс and μ being contact and internal friction coefficients; and Е being elasticity modulus) as well as comparing the design strength with experimental data obtained in the process of uniaxial compression.

      Findings. The technique makes it possible to identify both maximum strength and residual strength of cylindrical rock samples using four indicators of properties which can be simply defined by experiment. Comparison of the analytical strength limits and experimental data, obtained in terms of uniaxial compression, supports the idea of high efficiency of the proposed technique.

      Originality. For the first time, analytical modeling of cylindrical rock sample breakage has been performed in terms of the truncated-wedge destruction taking into consideration the standard horizontal stresses as well as contact and internal friction parameters.

      Practical implications. The technique advantage is to apply promptly the calculation results in the context of industrial enterprises since their environment helps apply simple procedures to define indices of physiсomechanical characteristics of rocks for determination of stability of underground structures and reduction of energy consumption while disintegrating in open pits and mining and processing complexes.

      Keywords: rock, strength, breakage, crack, stress, uniaxial compression


      REFERENCES

  1. Zhang, L., Cao, P., & Radha, K.C. (2010). Evaluation of rock strength criteria for wellbore stability analysis. International Journal of Rock Mechanics and Mining Sciences, 47(8), 1304-1316. https://doi.org/10.1016/j.ijrmms.2010.09.001
  2. Sdvyzhkova, O., Babets, D., Moldabayev, S., Rysbekov, K., & Sarybayev, M. (2020). Mathematical modeling a stochastic variation of rock properties at an excavation design. Proceedings of the 20th International Multidisciplinary Scientific GeoConference: Science and Technologies in Geology, Exploration and Mining, 165-172. https://doi.org/10.5593/sgem2020/1.2/s03.021
  3. Blokhin, V.S., Bolshakov, V.I., & Malich, N.G. (2006). Osnovnye parametry tekhnologicheskikh mashin. Mashiny dlya dezintegratsii tverdykh materialov. Dnepropetrovsk, Ukraina: IMA-press, 404 s.
  4. Nesmashnyy, E.A. (2001). Optimizatsiya geometricheskiikh parametrov otkrytykh gornykh vyrabotok. Krivoy Rog, Ukraina: Mineral, 118 s.
  5. Nesmashnyy, E.A., & Bolotnikov, A.V. (2017). Opredeleniye prochnosti skalnykh porod s ispolzovaniyem sovremennogo oborudovaniya na primere mestorozhdeniya “Bolshaya Glivatka”. Metallurgicheskaya i Gornorudnaya Promyshlennost’, (3), 82-87.
  6. Huang, B., & Liu, J. (2013). The effect of loading rate on the behavior of samples composed of coal and rock. International Journal of Rock Mechanics and Mining Sciences, (61), 23-30. https://doi.org/10.1016/j.ijrmms.2013.02.002
  7. Vinogradov, V.V. (1989). Geomekhanika upravleniya sostoyaniyem massiva vblizi gornykh vyrabotok. Kiev, Ukraina: Naukova dumka, 192 s.
  8. You, M. (2010). Mechanical characteristics of the exponential strength criterion under conventional triaxial stresses. International Journal of Rock Mechanics and Mining Sciences, 47(2), 195-204. https://doi.org/10.1016/j.ijrmms.2009.12.006
  9. Meyer, J.P., & Labuz, J.F. (2013). Linear failure criteria with three principal stresses. International Journal of Rock Mechanics and Mining Sciences, (60), 180187. https://doi.org/10.1016/j.ijrmms.2012.12.040
  10. Bartashchuk, O. (2016). Systemna orhanizatsiia dyziunktyvnoi tektoniky konsolidovanoho fundamentu Dniprovsko-Donetskoho paleoryftu. Chastyna 1. Lineamenty. Visnyk KhNU, Seriia “Heolohiia, Heohrafiia, Ekolohiia”, (45), 14-22.
  11. Kalchuk, S.V. (2011). Vplyv tektonichnykh syl na formuvannia napruzheno-deformovanoho stanu porid rodovyshch blochnoho oblytsiuvalnoho kameniu. Visnyk ZhDTU, (1), 162-165.
  12. Shmatovskiy, L.D., Girich, E.G., & Pozhitko, I.I. (2002). Opyt podgotovki i ispolzovaniya gidravlicheskogo oborudovaniya dlya otsenki napryazhennogo sostoyaniya ugleporodnogo massiva plasta. Heotekh-nichna Mekhanika, (37), 104-109.
  13. Henning, J.G., & Mitri, H.S. (2007). Numerical modelling of ore dilution in blasthole stoping. International Journal of Rock Mechanics and Mining Sciences, 44(5), 692-703. https://doi.org/10.1016/j.ijrmms.2006.11.002
  14. Sdvyzhkova, O., Golovko, Y., & Klymenko, D. (2017). Effect of harmonic oscillations on a crack initiation in the rock mass. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 13-18.
  15. Chanyshev, A.I. (2010). Zapredelnoe deformirovanie materialov pri antiploskoy deformatsii i ego uchet v zadache o rasprostranenii pryamolineynoy polubeskonechnoy treshchiny. Deformirovanie i Razrushenie Materialov s Defektami i Dinamicheskie Yavleniya v Gornykh Porodakh i Vyrabotkakh, 349-354.
  16. Davydenko, O.M., & Ihnatov, A.O. (2019). Mekhanika efektyvnoho ruinuvannia hirskykh porid sharoshkovo-lantsiuhovymy dolotamy. Porodorazrushayushchiy i Metalloobrabatyvayushchiy Instrument – Tekhnika i Tekhnologiya ego Izgotovleniya i Primeneniya, (22), 148-157.
  17. Olovyannyy, A.G. (2012). Mekhanika gornykh porod. Modelirovaniye razrusheniy. Sankt-Peterburg, Rossiya: Kosta, 280 s.
  18. Vasilyev, L.M., Vasilyev, D.L., Malich, N.G., & Angelovskiy, A.A. (2018). Mekhanika obrazovaniya form razrusheniya obraztsov gornykh porod pri ikh szhatii. Dnepr, Ukraina: IMA-press, 174 s.
  19. Vаsylіеv, L.M., Vаsylіеv, D.L., Nаzаrоv, О.Yе., Mаlіch, M.G., & Kаtаn, V.О. (2021). Thе mеthоd fоr dеtеrmіnіng thе pаrаmеtеrs оf thе dіаgrаms оf а truncаtеd-wеdgе dеstructіоn оf cylіndrіcаl sаmplеs оf rоcks. Nаukоvyі Vіsnyk Nаtsіоnаlnоhо Hіrnychоhо Unіvеrsytеtu, (1), 47-52. https://doi.org/10.33271/nvngu/2021-1/047
  20. Bronshteyn, I.N., & Semendyayev. L.A. (1964). Spravochnik po matematike. Moskva, Rossiya: Nauka, 608 s.
  21. Vasilyev, L.M., & Vasilyev, D.L. (2013). Teoreticheskoe obosnovanie formirovaniya gorizontalnykh normalnykh napryazheniy v massivakh gornykh porod. Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopayemykh, (2), 81-90.
  22. Vasil’ev, L.M., & Vasil’ev, D.L. (2013). Theoretical ground for origination of normal horizontal stresses in rock masses. Journal of Mining Science, 49(2), 240-247. https://doi.org/10.1134/s1062739149020056
  23. Chykhladze, E.D., Verevicheva, M.A., & Halahuria, Ye.I. (2010). Osnovy liniinoi teorii pruzhnosti, plastychnosti ta povzuchosti. Kharkiv, Ukraina: UkrDAZT, 149 s.
  24. Melnikov, N.V., & Rzhevskiy, V.V. (1975). Spravochnik (kadastr) fizicheskikh svoystv gornykh porod. Moskva, Rossiya: Nedra, 279 s.
  25. Лицензия Creative Commons