Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Reduction of ore dilution when mining low-thickness ore bodies by means of artificial maintenance of the mined-out area

Aibek Mussin1, Askar Imashev1, Azamat Matayev1, Yerkebulan Abeuov1, Nurlan Shaike1, Aidar Kuttybayev2

1Abylkas Saginov Karaganda Technical University, Karaganda, Kazakhstan

2Satbayev University, Almaty, Kazakhstan


Min. miner. depos. 2023, 17(1):35-42


https://doi.org/10.33271/mining17.01.035

Full text (PDF)


      ABSTRACT

      Purpose. The research purpose is to study the effectiveness of artificial maintenance of the mined-out space based on the use of cable bolts to reduce the dilution coefficient when mining low-thickness ore bodies.

      Methods. Geotechnical mapping of the rock mass according to the Q, RMR, RQD and GSI rating classifications is conducted, as well as a linear survey of the fracture system in the hanging wall and footwall rocks is performed using a rock compass and the GEO ID application. Numerical analysis by the limit equilibrium method in the Unwedge software package is applied to determine the safety factor of a mass divided by fractures into wedges. Using a Schmidt test hammer, the uniaxial compressive strength of the mass rocks has been determined. The full-scale studies have been conducted using cable support in the conditions of the Akbakai deposit.

      Findings. It has been revealed that the footwall rocks are in a stable state, while the safety factor of the hanging wall rocks is 0.98, which requires artificial maintenance using cable bolts. The cable support parameters are calculated taking into account nonuniform distribution of horizontal and vertical stresses in the rock mass. It has been determined that when strengthening the hanging wall with cable bolts in inclined veins with a dip angle of up to 40º, the average ore dilution is 66.1%, and that of previously mined without fastening is 68.7%. In similar experiments in steep-dipping veins with a dip angle of more than 60º, dilution decreases from 62.8 to 48.7%.

      Originality. It has been revealed that in the conditions of the Akbakai deposit, cable fastening of the hanging wall rocks is effective at an ore deposit dip angle of more than 60º, at which the mined ore dilution coefficient decreases.

      Practical implications. The research results can be used to increase the stability of hanging wall rocks when mining low-thickness ore bodies with a sublevel caving system.

      Keywords: dilution, ore, cable fastening, stope area, rocks, fracturing, dip angle


      REFERENCES

  1. Tazhibekova, K., Shametova, A., Urazbekov, A., Akhmetzhanov, B., Akenov, S., & Tulupova, S. (2020). Enhancing eco-economic efficiency of mineral deposit exploration to achieve sustainable development in the mining industry of Kazakhstan. Progress in Industrial Ecology, an International Journal, 14(3-4), 212-228. https://doi.org/10.1504/PIE.2020.113425
  2. Khromykh, S.V., Oitseva, T.A., Kotler, P.D., D’yachkov, B.A., Smirnov, S.Z., Travin, A.V., & Agaliyeva, B.B. (2020). Rare-metal pegmatite deposits of the Kalba region, Eastern Kazakhstan: Age, composition and petrogenetic implications. Minerals, 10(11), 1017. https://doi.org/10.3390/min10111017
  3. Mukhanova, A.A., Yessengaziyev, A.M., Barmenshinova, M.B., Samenova, N.O., Toilanbay, G.A., & Toktagulova, K.N. (2022). Improvement of the technology related gold-containing raw materials with the use of ultramicroheterogeneous flotoreagent. Metalurgija, 61(3-4), 777-780.
  4. Yessengaziyev, A., Mukhanova, A., Tussupbayev, N., & Barmenshinova, M. (2022). The usage of basic and ultramicroheterogenic flotation reagents in the processing of technogenic copper-containing raw materials. Journal of Chemical Technology and Metallurgy, 57(6), 1235-1242.
  5. Akilbekova, S., Myrzalieva, S., Moldabayeva, G., Mamyrbayeva, K., Turkmenbayeva, M., & Suleimenova, B. (2021). Investigation if the process of sulfide-firing of gold-antimony concentrate. Journal of Chemical Technology & Metallurgy, 56(5).
  6. Bejsebaev, A.M., Bitimbaev, M.Zh., Krupnik, L.A., & Tsekhovoj, A.F. (2001). The role of central Asian mining and industrial union in the development of mining and metallurgical complex in Kazakhstan. Gornyi Zhurnal, (11), 10-13.
  7. Akimova, L.М., Khomiuk, N.L., Bezena, I.M., Lytvynchuk, I.L., & Petroye, O. (2020). Planning of socio-economic development of the territories (experience of European Union). International Journal of Management, 11(4), 638-646.
  8. Akimova, L.М., Khomiuk, N.L., Bezena, I.M., Lytvynchuk, I.L., & Petroye, O. (2020). Planning of socio-economic development of the territories (experience of European Union). International Journal of Management, 11(4), 638-646.https://doi.org/10.1088/1755-1315/970/1/012040
  9. Urli, V., & Esmaieli, K. (2016). A stability-economic model for an open stope to prevent dilution using the ore-skin design. International Journal of Rock Mechanics and Mining Sciences, (82), 71-82. https://doi.org/10.1016/j.ijrmms.2015.12.001
  10. Petlovanyi, M.V., Ruskykh, V.V., & Zubko, S.A. (2019). Peculiarities of the underground mining of high-grade iron ores in anomalous geological conditions. Journal of Geology, Geography and Geoecology, 28(4), 706-716. https://doi.org/10.15421/111966
  11. Zhang, D., Liu, S., & Wang, J. (2022). Study on optimization of stope structure parameters for steeply inclined medium-thick broken ore bodies. Mining, Metallurgy & Exploration, 39(3), 1099-1112. https://doi.org/10.1007/s42461-022-00562-8
  12. Emad, M.Z., Mitri, H., & Kelly, C. (2014). Effect of blast-induced vibrations on fill failure in vertical block mining with delayed backfill. Canadian Geotechnical Journal, 51(9), 975-983. https://doi.org/10.1139/cgj-2013-0305
  13. Petlovanyi, M., & Mamaikin, O. (2019). Assessment of an expediency of binder material mechanical activation in cemented rockfill. ARPN Journal of Engineering and Applied Sciences, 14(20), 3492-3503.
  14. Petlovanyi, M.V., Zubko, S.A., Popovych, V.V., & Sai, K.S. (2020) Physicochemical mechanism of structure formation and strengthening in the backfill massif when filling underground cavities. Voprosy Khimii i Khimicheskoi Tekhnologii, (6), 142-150. https://doi.org/10.32434/0321-4095-2020-133-6-142-150
  15. Fedko, M.B., Kolosov, V.A., Pismennyy, S.V., & Kalinichenko, Ye.A. (2014). Economic aspects of change-over to TNT-free explosives for the purposes of ore underground mining in Kryvyi Rih basin. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 79-84.
  16. Dyachkov, B.A., Bissatova, A.Y., Mizernaya, M.A., Zimanovskaya, N.A., Oitseva, T.A., Amralinova, B.B., Aitbayeva, S.S., Kuzmina, O.N., & Orazbekova, G.B. (2021). Specific features of geotectonic development and ore potential in Southern Altai (Eastern Kazakhstan). Geology of Ore Deposits, 63(5), 383-408. https://doi.org/10.1134/S1075701521050020
  17. Delentas, A., Benardos, A., & Nomikos, P. (2021). Analyzing stability conditions and ore dilution in open stope mining. Minerals, 11(12), 1404. https://doi.org/10.3390/min11121404
  18. Yu, K., Zheng, C., & Ren, F. (2020). Numerical experimental study on ore dilution in sublevel caving mining. Mining, Metallurgy & Exploration, 38(1), 457-469. https://doi.org/10.1007/s42461-020-00337-z
  19. Jarosz, A.P., & Shepherd, L. (2018). Open stope cavity monitoring for the control of dilution and ore loss. Mine Planning and Equipment Selection, 63-66. https://doi.org/10.1201/9780203747124-11
  20. Bazaluk, O., Petlovanyi, M., Zubko, S., Lozynskyi, V., & Sai, K. (2021). Instability assessment of hanging wall rocks during underground mining of iron ores. Minerals, 11(8), 858. https://doi.org/10.3390/min11080858
  21. Forster, K., Milne, D., & Pop, A. (2007). Mining and rock mass factors influencing hanging wall dilution. Rock Mechanics: Meeting Society’s Challenges and Demands, 1361-1366. https://doi.org/10.1201/NOE0415444019-c169
  22. Sultanov, M.G., Mataev, A.K., Kaumetova, D.S., Abdrashev R.M. Kuantay, A.S., & Orynbayev, B.M. (2020). Development of the choice of types of support parameters and technologies for their construction at the voskhod field. Ugol, (10), 17-21 https://doi.org/10.18796/0041-5790-2020-10-17-21
  23. Veselova, L.K., Bexeitova, R.T., Kassymkamova, K.K.M., Duisebaeva, K.Z., Terranova, R.O., Tumazhanova, S.O., & Taukebaev, O.Z. (2016). Altitudinal zonation of exomorphogenesis in Northern Tien Shan. International Electronic Journal of Mathematics Education, 11(7), 1987-2001.
  24. Imansakipova, B.B., Baygurin, Z.D., Soltabaeva, S.T., Milev, I., & Miletenko, I.V. (2014). Causes of strain of buildings and structures in areas of abnormal stress and surveillance terrestrial laser scanners. Life Science Journal, 11(9s), 165-170.
  25. Shults, R., Soltabayeva, S., Seitkazina, G., Nukarbekova, Z., & Kucherenko, O. (2020). Geospatial monitoring and structural mechanics models: A case study of sports structures. Environmental Engineering, (11), 1-9. https://doi.org/10.3846/enviro.2020.685
  26. Arystan, I.D., Baizbaev, M.B., Mataev, A.K., Abdieva, L.M., Bogzhanova, Zh.K., & Abdrashev, R.M. (2020). Selection and justification of technology for fixing preparatory workings in unstable massifs on the example of the mine10 years of independence of Kazakhstan. Ugol, (6), 10-14. https://doi.org/10.18796/0041-5790-2020-6-10-14
  27. Petlovanyi, M., Ruskykh, V., Zubko, S., & Medianyk, V. (2020). Dependence of the mined ores quality on the geological structure and properties of the hanging wall rocks. E3S Web of Conferences, (201), 01027. https://doi.org/10.1051/e3sconf/202020101027
  28. Abdellah, W.R.E., Hefni, M.A., & Ahmed, H.M. (2019). Factors influencing stope hanging wall stability and ore dilution in narrow-vein deposits: Part 1. Geotechnical and Geological Engineering, 38(2), 1451-1470. https://doi.org/10.1007/s10706-019-01102-w
  29. Volkov, A.P., Buktukov, N.S., & Kuanyshbaiuly, S. (2022). Safe and effective methods for mining thin tilt and steeply dipping deposits with ore drawing via mud flow. Gornyi Zhurnal, (4), 86-91. https://doi.org/10.17580/gzh.2022.04.13
  30. Nurpeissova, M., Bitimbayev, M.Zh., Rysbekov, K.В., Derbisov, K., Тurumbetov, Т., & Shults, R. (2020). Geodetic substantiation of the saryarka copper ore region. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 6(444), 194-202. https://doi.org/10.32014/2020.2518-170X.147
  31. Crocket, J.H., Mochalov, A.G., & Laajoki, K.V. (1999). The platinum-group minerals of the Baimka placer deposits, Aluchin horst, Russian Far East. Canadian Mineralogist, 37(5), 1117-1129.
  32. Barton, N.R., Lien, R., & Lunde, J. (1974). Engineering classification of jointed rock masses for the design of tunnel support. Rock Mechanics, (6), 189-236. https://doi.org/10.1007/BF01239496
  33. Nickson, S.D. (1992). Cable support guidelines for underground hard rock mine operations. Vancouver, Canada: University of British Columbia, 223 p.
  34. Stephenson, R.M., & Sandy, M.P. (2013). Optimising stope design and ground support – A case study. Proceedings of the 7th International Symposium on Ground Support in Mining and Underground Construction, 387-400. https://doi.org/10.36487/ACG_rep/1304_25_Stephenson
  35. Hassell, R., de Vries, R., Player, J., & Rajapakse, A. (2015). Dugald River trial stoping, overall hanging wall behaviour. Proceedings of the International Seminar on Design Methods in Underground Mining, 185-198. https://doi.org/10.36487/acg_rep/1511_08_hassell
  36. Chinnasane, D., Knutson, M., & Watt, A. (2014). Use of cable bolts to reinforce the hanging pillars and improve the ore recovery when stopes are mined using double top sills at Vale’s Copper Cliff Mine. Proceedings of the Seventh International Conference on Deep and High Stress Mining, 305-314. https://doi.org/10.36487/acg_rep/1410_20_chinnasane
  37. Hutchinson, D.J., & Falmagne, V. (2000). Observational design of underground cable bolt support systems https://doi.org/10.1007/s100640050078utilizing instrumentation. Bulletin of Engineering Geology and the Environment, 58(3), 0227-0241. https://doi.org/10.1007/s100640050078
  38. Taran, I.A. (2012). Laws of power transmission on branches of double-split hydrostatic mechanical transmissions. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 69-75.
  39. Taran, I. (2012). Interrelation of circular transfer ratio of double-split transmissions with regulation characteristic in case of planetary gear output. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (3), 78-85.
  40. Imashev, A.Zh., Suimbayeva, A.M., Abdibaitov, Sh.A., Musin, A.A., & Asan, S.Yu. (2020). Justification of the optimal cross-sectional shape of the mine workings in accordance with the rating classification. Ugol, (6), 4-9. https://doi.org/10.18796/0041-5790-2020-6-4-9
  41. Matayev, A.K., Musin, A., Abdrashev, R.M., Kuantay, A.S., & Kuandykova, A.N. (2021). Substantiating the optimal type of mine working fastening based on mathematical modeling of the stress condition of underground structures. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (3), 57-63. https://doi.org/10.33271/nvngu/2021-3/057
  42. Pysmennyi, S., Fedko, M., Shvaher, N., & Chukharev, S. (2020). Mining of rich iron ore deposits of complex structure under the conditions of rock pressure development. E3S Web of Conferences, (201), 01022. https://doi.org/10.1051/e3sconf/202020101022
  43. Pysmenniy, S., Shvager, N., Shepel, O., Kovbyk, K., & Dolgikh, O. (2020). Development of resource-saving technology when mining ore bodies by blocks under rock pressure. E3S Web of Conferences, (166), 02006. https://doi.org/10.1051/e3sconf/202016602006
  44. Matayev, A.K., Kainazarova, A.S., Arystan, I.D., Abeuov, Ye., Kainazarov, A.S., Baizbayev, M.B., Demin, V.F., & Sultanov, M.G. (2021). Research into rock mass geomechanical situation in the zone of stope operations influence at the 10th Anniversary of Kazakhstan’s Independence mine. Mining of Mineral Deposits, 15(1), 103-111. https://doi.org/10.33271/mining15.01.103
  45. Khalikova, E.R., Diomin, V.F., Diomina, T.V., & Zhurov, V.V. (2019). Studying coal seam bedding tectonic breach impact on supporting parameters of mine workings with roof bolting. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 16-21.
  46. Cornet, F.H. (1986). Stress determination from hydraulic tests on pre-existing fractures – The HTPF method. Proceedings of the International Symposium on Rock Stress Measurements, 301-312.
  47. Yelemessov, K., Krupnik, L., Bortebayev, S., Beisenov, B., Baskanbayeva, D., & Igbayeva, A. (2020). Polymer concrete and fibre concrete as efficient materials for manufacture of gear cases and pumps. E3S Web of Conferences, (168), 00018. https://doi.org/10.1051/e3sconf/202016800018
  48. Baskanbayeva, D.D., Krupnik, L.A., Yelemessov, K.K., Bortebayev, S.A., & Igbayeva, A.E. (2020). Justification of rational parameters for manufacturing pump housings made of fibroconcrete. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 68-74. https://doi.org/10.33271/nvngu/2020-5/068
  49. Hubbert, M.K., & Willis, D.G. (1957). Mechanics of hydraulic fracturing. Transactions of the AIME, 210(01), 153-168. https://doi.org/10.2118/686-g
  50. Imashev, A., Suimbayeva, A., Zeitinova, S., Zhunusbekova, G., & Mussin, A. (2022). Research into stress-strain state of the mass under open pit with a change in the open-pit bottom width. Mining of Mineral Deposits, 16(3), 61-66. https://doi.org/10.33271/mining16.03.061
  51. Imashev, A.Z., Sudarikov, A.E., Musin, A.A., Suimbayeva, A.M., & Asan, S.Y. (2021). Improving the quality of blasting indicators by studying the natural stress field and the impact of the blast force on the rock mass. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 4(448), 30-35. https://doi.org/10.32014/2021.2518-170X.78
  52. Arystan, I.D., Nemova, N.A., Baizbaev, M.B., & Mataev, A.K. (2021). Efficiency of modified concrete in lining in underground structures. IOP Conference Series: Earth and Environmental Science, 773(1), 012063. https://doi.org/10.1088/1755-1315/773/1/012063
  53. Лицензия Creative Commons