Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Research into the pressureless flow in hydrotechnical systems at mining enterprises

Yevhen Semenenko1, Olha Medvedieva1, Volodymyr Medianyk2, Borys Bluyss3, Oleksandr Khaminich4

1Institute of Geotechnical Mechanics named by N. Poljakov of National Academy of Sciences of Ukraine, Dnipro, Ukraine

2Dnipro University of Technology, Dnipro, Ukraine

3Prydneprovsk Research Center, Dnipro, Ukraine

4Oles Honchar Dnipro National University, Dnipro, Ukraine

Min. miner. depos. 2023, 17(1):28-34

https://doi.org/10.33271/mining17.01.028

Full text (PDF)

ABSTRACT

Purpose. The research purpose is to develop a mathematical model of a pressureless flow in a channel with the occurrence in some areas of overflow layer through the wall. Using this model, it is possible to calculate the overflow layer height and length, as well as the change in flow rate in the channel due to the withdrawal of part of the fluid as a result of the overflow.

Methods. The research uses a comprehensive multi-stage analytical approach. Firstly, in order to develop a mathematical model for a pressureless flow in the channel with the occurrence in some areas of overflow layer through the wall, this research analytically determines the dependence of the flow rate through the channel wall based on formulas for calculating the weir discharge coefficient. At the second stage, a mathematical model of a hydraulic mixture pressureless flow in a rectangular channel with an overflow through the wall is developed to determine the parameters and flow regimes of the stream.

Findings. The dependences of the dimensionless height of the overflow through the channel wall and the effective critical flow depth on the dimensionless current channel length have been obtained for various values of the acting force parameters and the process parameter of the fluid overflow through the channel wall. This made it possible to study the dynamics of changes in these values along the channel for various values of the specified parameters, and to assess the degree of influence of the relevant factors on the characteristics of the pressureless flow along the channel and the process of fluid overflow through wall.

Originality. For the first time, the model of the pressureless flow in the channel is generalized for the case of occurrence in some areas of overflow layer through the wall, when the length and height of the overflow layer are not determined by a hole in the side surface, but are controlled by a decrease in the corresponding flow rate. For the first time, this model makes it possible to calculate the height and length of the overflow layer and the change in the flow rate in the channel due to the withdrawal of part of the fluid as a result of the overflow in cases of overflowing condition of the channel with the stream under unstable and non-calculated flow regimes.

Practical implications. The mathematical model and the calculation results can be used to ensure the environmental safety of the logistics systems of mining enterprises, as well as to assess the volume of the environmental pollution in case of overflowing through the wall of the channels of pressureless hydraulic transportation of waste from mineral processing and metallurgical plants.

Keywords: channel, overflow, flow, logistics, ecology, pollution, safety, hydraulic mixture

REFERENCES

1. Johnston, R. (2022). Supply of critical minerals amid the Russia-Ukraine war and possible sanctions. Energypolicy. Columbia, 1-9.
2. Koval, V., Borodina, O., Lomachynska, I., Olczak, P., Mumladze, A., & Matuszewska, D. (2022). Model analysis of eco-innovation for national decarbonisation transition in integrated European energy system. Energies, 15(9), 3306. https://doi.org/10.3390/en15093306
3. Mykhailov, V.A., Hrinchenko, O.V., & Malyuk, B.I. (2022). Exploration and mining perspectives of the critical elements for green technologies in Ukraine. Geological Society, 526(1). https://doi.org/10.1144/SP526-2021-133
4. Medvedeva, O.A. (2012) Khvostokhranilishcha Krivbassa. Problemy i osobennosti ikh ekspluatatsii. Heotekhnichna Mekhanika, (103), 279-285.
5. Mineralni resursy Ukrainy. (2018). Kyiv, Ukraina: Derzhavnyi informatsiinyi heolohichnyi fond Ukrainy, 270 s.
6. Evtekhov, V.D., Paranko, I.S., & Evtekhov, E.V. (1999). Alternativnaya mineralno-syryevaya baza Krivorozhskogo zhelezorudnogo basseyna. Krivoy Rog, Ukraina: Krivorozhskiy tekhnicheskiy universitet, 70 s.
7. Evtekhov, V.D., & Fedorova, I.A. (2004). Mineralogiya tekhnogennykh zhelezorudnykh otlozheniy Krivorozhskogo basseyna. Naukovi Pratsi Donetskoho Natsionalnoho Tekhnichnoho Universytetu. Seriia: Hirnycho-Heolohichna, (81), 26-29.
8. Bulat, A.F., Vitushko, O.V., & Semenenko, E.V. (2010). Modeli elementov gidrotekhnicheskikh sistem gornykh predpriyatiy. Dnipro, Ukraina: Herda, 216 s.
9. Bazaluk, O., Petlovanyi, M., Lozynskyi, V., Zubko, S., Sai, K., & Saik, P. (2021). Sustainable underground iron ore mining in ukraine with backfilling worked-out area. Sustainability, 13(2), 834. https://doi.org/10.3390/su13020834
10. Stupnik, N., Kalinichenko, V., Pismennij, S., & Kalinichenko, Е. (2015). Features of underlying levels opening at “Arsellor Mittal Kryvyi Rih” underground mine. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 39-44. https://doi.org/10.1201/b19901-8
11. Pivnyak, G., Bondarenko, V., & Kovalevska, I. (2015). New developments in mining engineering 2015: Theoretical and practical solutions of mineral resources mining. London, United Kingdom: Balkema, 607 p. https://doi.org/10.1201/b19901
12. Kalinichenko, V., Pysmennyi, S., Shvaher, N., & Kalinichenko, O. (2018). Selective underground mining of complex structured ore bodies of Kryvyi Rih Iron Ore Basin. E3S Web of Conferences, (60), 00041 https://doi.org/10.1051/e3sconf/20186000041
13. Rysbekov, K.B., Bitimbayev, M.Z., Akhmetkanov, D.K., & Miletenko, N.A. (2022). Improvement and systematization of principles and process flows in mineral mining in the Republic of Kazakhstan. Eurasian Mining, (1), 41-45. https://doi.org/10.17580/em.2022.01.08
14. Turekulova, A.N., Mukhambetova, L.K., Doshan, A.S., Issabekov, B.N., Chimgentbayeva, G.K., & Turegeldinova, A.Z. (2016). Government strategic support for investment activity. International Journal of Environmental and Science Education, 11(11), 4931-4940.
15. Kryshtanovych, M., Akimova, L., Akimov, O., Kubiniy, N., & Marhi-tich, V. (2021). Modeling the process of forming the safety potential of engineering enterprises. International Journal of Safety and Security Engineering, 11(3), 223-230. https://doi.org/10.18280/ijsse.110302
16. Rysbekov, K.B., Toktarov, A.A., & Kalybekov, T. (2021). Technique for justifying the amount of the redundant developed reserves considering the content of metal in the mining ore. IOP Conference Series: Earth and Environmental Science, 666(3), 032076. https://doi.org/10.1088/1755-1315/666/3/032076
17. Koval, V., Olczak, P., Vdovenko, N., Boiko, O., Matuszewska, D., & Mikhno, I. (2021). Ecosystem of environmentally sustainable municipal infrastructure in Ukraine. Sustainability, 13(18), 10223. https://doi.org/10.3390/su131810223
18. Gorova, A., Pavlychenko, A., & Borysovs’ka, O. (2013). The study of ecological state of waste disposal areas of energy and mining companies. Annual Scientific-Technical Collection – Mining of Mineral Deposits 2013, 169-172. https://doi.org/10.1201/b16354-29
19. Bekseitova, R.T., Veselova, L.K., Kasymkanova, K.M., Jangulova, G.K., Tumazhanova, S., Bektur, B., & Beisembina, G.T. (2016). Preliminary discussions on impacts of industrial induced factors. Journal of Landscape Ecology, 9(3), 50-65. https://doi.org/10.1515/jlecol-2016-0014
20. Pavlychenko, A., & Kovalenko, A. (2013). The investigation of rock dumps influence to the levels of heavy metals contamination of soil. Annual Scientific-Technical Collection – Mining of Mineral Deposits 2013, 237-238. https://doi.org/10.1201/b16354-43
21. Semenenko, E.V. (2011). Nauchnyye osnovy tekhnologiy gidrome-khanizatsii otkrytoy razrabotki titan-tsirkonovykh rossypey. Kiev, Ukraina: Naukova dumka, 232 s.
22. Larrauri, P.C., & Upmanu, L. (2018). Tailings dams failures: Updated statistical model for discharge volume and runout. Environments Journal, 5(2), 28. https://doi.org/10.3390/environments5020028
23. Medianyk, V.Yu., Netecha, M.V., & Demchenko, Yu.I. (2015). Integrated production and utilization of mineral resources. Mining of Mineral Deposits, 9(1), 93-100. https://doi.org/10.15407/mining09.01.093
24. Dziuba, S.V. (2021). Rozvytok naukovykh osnov lohistyky v hidrotekhnichnykh systemakh hirnychykh pidpryiemstv. Dnipro, Ukraina: IHTM NAN Ukrainy, 406 s.
25. Adamo, N., Al-Ansari, N., Sissakian, V., Laue, J., & Knutsson, S. (2020). Dam safety: The question of tailings dams. Journal of Earth Sciences and Geotechnical Engineering, 11(1), 1-26. https://doi.org/10.47260/jesge/1111
26. Blyuss, B.O., Dzyuba, S.V., Semenenko, E.V., & Kruglikov, D.G. (2021). Methodology for environmental hazard assessment based on the parameters of the pressureless flow regime in the channel. Bulletin of Dnipro University. Series: Mechanics, 6(29(25)), 28-42.
27. Medvedіeva, О.О. (2021). Development of the scientific foundations of resource-saving technologies of hydromechanized development of man-made deposits. Dissertation. Dnipro, Ukraine: Institute of Geotechnical Mechanics named by N. Poljakov of NAS.
28. Padulano, R., & Del Giudice, G. (2018). Vertical drain and overflow pipes: Literature review and new experimental data. Journal of Irrigation and Drainage Engineering, 144(6), 04018010. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001311
29. Padulano, R., & Del Giudice, G. (2016). Transitional and weir flow in a vented drop shaft with a sharp-edged intake. Journal of Irrigation and Drainage Engineering, 142(5), 06016002. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001011
30. Plichko, L.V., Zatserkovnyi, V.I., Khilchevskyi, V.K., Mizernaya, M., & Bakytzhan, A. (2020). Assessment of changes a number of surface water bodies within the sub-basin of the Desna River using remote sensing materials. Geoinformatics: Theoretical and Applied Aspects, (1), 1-5. https://doi.org/10.3997/2214-4609.2020geo101
31. Blyuss, B.A., Sokil, A.M., & Goman, O.G. (1999). Problemy gravitatsionnogo obogashcheniya titan-tsirkonovykh peskov. Dnepropetrovsk, Ukraina: Poligrafist, 190 s.
32. Arvandi, S., Khosrojerdi, A., Rostami, M., & Baser, H. (2013). Simulation of interaction of side weir overflows with bed-load transport and bed morphology in a channel (SSIIM2.0). International Journal of Water Resources and Environmental Engineering, 5(5), 255-261. https://doi.org/10.5897/IJWREE12.124
33. Blyuss, B.A., & Golovach, N.A. (1999). Sovershenstvovaniye tekhnologiy predobogashcheniya ilmenitovykh rud. Dnepropetrovsk, Ukraina: Poligrafist, 126 s.
34. Semenenko, E., & Kirichko, S. (2015). Grounds of parameters of high concentrated pulps storage technologies. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 373-377. https://doi.org/10.1201/b19901-65
35. Semenenko, E.V., Medvedeva, O.A., Kirichko, S.N., & Nikiforova, N.A. (2018). Raschet parametrov i rezhimov gidrotransportirovaniya pri razrabotke tekhnogennykh mestorozhdeniy v khranilishchakh otkhodov obogashcheniya. Heotekhnіchna Mekhanіka, (142), 91-102.
36. Semenenko, Y., Kril, S., Medvedieva, O., Nykyforova, N., & Tatarko, L. (2019). Calculation of pressure loss and critical velocity for slurry flows with additive agents in vertical polyethylene pipelines. E3S Web of Conferences, (109), 00083. https://doi.org/10.1051/e3sconf/201910900083
37. Sokil, A.M. (2002). Fiziko-tekhnicheskiye osnovy tekhnologiy pererabotki titan-tsirkonovykh rossypey. Dnepropetrovsk, Ukraina: IGTM, 399 s.