Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

An approach based on Machine Learning Algorithms, Geostatistical Technique, and GIS analysis to estimate phosphate ore grade at the Abu Tartur Mine, Western Desert, Egypt

Abdelrahem Embaby1, Ashraf Ismael1, Faisal A. Ali1, H.A. Farag1, B.G. Mousa1, Sayed Gomaa1, Mohamed Elwageeh2

1Department of Mining and Petroleum Engineering, Faculty of Engineering, Al-Azhar University, Cairo, Egypt

2Mining, Petroleum, and Metallurgical Engineering Department Cairo University, Giza, Egypt


Min. miner. depos. 2023, 17(1):108-119


https://doi.org/10.33271/mining17.01.108

Full text (PDF)


      ABSTRACT

      Purpose. This paper aims to estimate phosphate ore grade in the Abu Tartur area, Western Desert, Egypt, using four Machine Learning Algorithms (MLA), Geostatistical Techniques (variogram and kriging models), and GIS-analysis.

      Methods. Four machine-learning techniques include Optimizable Decision Tree (ODT), Optimizable Support Vector Machine (OSVM), Optimizable Gaussian Process Regression (OGPR), Artificial Neural Network (ANN) are applied in this paper. The constructed variogram and kriging models, as well as GIS-analysis, provide a clear understanding of all the elements distributed in the Abu Tartur phosphate ore and are very useful at the planning and mining stages.

      Findings. Phosphate content has been estimated with high accuracy based on the results of four machine-learning techniques. The most efficient technique for estimating phosphate content is optimizable (OGPR), which gives correlation coefficients (R) of 0.933 and 0.927 with Mean Absolute Errors (MAE) of 0.983 and 0.933 for the training and validation data, respectively. In addition, geostatistical and GIS methods have shown that percentage of P2O5, thickness, and Fe% are suitable for phosphate mining processes, except for small pockets that require little attention at the mining stage.

      Originality. This research attempts to develop a quick estimation of phosphate ore grade and to provide a clear understanding about the distribution of different constituents within the ore body using different techniques.

      Practical implications. Grade estimation is commonly reduced to a function approximation. Artificial intelligence (AI) techniques, and in particular the chosen type of AI techniques, can provide, a valid methodology for estimating grade, and the proposed models can be applied to any other data in the range used in this research.

      Keywords: Machine Learning Algorithms (MLA), geostatistical and GIS modeling, Abu Tartur phosphate ore


      REFERENCES

  1. Schalkoff, R.J. (1997). Artificial neural networks. New York, United States: McGraw-Hill, Computer Science Series, 422 p.
  2. Kapageridis, I.K. (1999). Application of artificial neural network systems to grade estimation from exploration data. PhD Thesis. Nottingham, United Kingdom: University of Nottingham.
  3. Zhang, G., Patuwo, B.E., & Hu, M.Y. (1998). Forecasting with artificial neural networks: The state of the art. International Journal of Forecasting, 14(1), 35-62. https://doi.org/10.1016/S0169-2070(97)00044-7
  4. Dave, V.S., & Dutta, K. (2014). Neural network-based models for software effort estimation: A review. Artificial Intelligence Review, 42(2), 295-307. https://doi.org/10.1007/s10462-012-9339-x
  5. Abiodun, O.I., Jantan, A., Omolara, A.E., Dada, K.V., Mohamed, N.A.E., & Arshad, H. (2018). Review article state-of-the-art in artificial neural network applications: A survey. Heliyon, (4), e00938. https://doi.org/10.1016/j.heliyon.2018.e00938
  6. Zador, A.M. (2019). A critique of pure learning and what artificial neural networks can learn from animal brains. Nature Communications, (10), 3770. https://doi.org/10.1038/s41467-019-11786-6
  7. Samanta, B., Bandopadhyay, S., & Ganguli, R (2006). Comparative evaluation of neural network learning algorithms for ore grade estimation. Mathematical Geology, 38(2), 175-197. https://doi.org/10.1007/s11004-005-9010-z
  8. Bakarr, J.A., Sasaki, K., Yaguba, J., & Karim, B.A. (2016). Integrating artificial neural networks and geostatistics for optimum 3D geological block modeling in mineral reserve estimation: A case study. International Journal of Mining Science and Technology, 26(4), 581-588. https://doi.org/10.1016/j.ijmst.2016.05.008
  9. He, S., & Li, F. (2021). Artificial neural network model in spatial analysis of geographic information system. Artificial Intelligence and Edge Computing in Mobile Information Systems, 1166877. https://doi.org/10.1155/2021/1166877
  10. Sarkar, B.C., Singh, R.K., Ray, D., Kumar, A., Sinha, P.K., & Sarkar, V. (2017). Iron ore grade modelling using geostatistics and artificial neural networks. Iron Ore Conference, (3).
  11. Mousa, B.G., Embaby, A.E., & Osman, M.E. (2016). Applications of GIS in operations of open cast mining. Berlin, Germany: LAP Lambert Academic Publishing, 132 p.
  12. Kaplan, U.E., & Topal, E. (2020). A new ore grade estimation using combine machine learning algorithms. Minerals, (10), 847. https://doi.org/10.3390/min10100847
  13. El Maghraoui, A., Ledmaoui, Y., Laayati, O., El Hadraoui, H., Chebak, A. (2022). Smart energy management: A comparative study of energy consumption forecasting algorithms for an experimental open-pit mine. Energies, (15), 4569. https://doi.org/10.3390/en15134569
  14. Zaki, M.M., Chen, S., Zhang, J., Feng, F., Khoreshok, A.A., Mahdy, M.A., & Salim, K.M.A. (2022) Novel approach for resource estimation of highly skewed gold using machine learning algorithms. Minerals, (12), 900. https://doi.org/10.3390/min12070900
  15. Patel, A.K., Chatterjee, S., & Gorai, A.K. (2019). Development of a machine vision system using the support vector machine regression (SVR) algorithm for the online prediction of iron ore grades. Earth Science Informatics, (12), 197-210. https://doi.org/10.1007/s12145-018-0370-6
  16. Dumakor-Dupey, N.K., & Arya, S. (2021). Machine learning – A review of applications in mineral resource estimation. Energies, (14), 4079. https://doi.org/10.3390/en14144079
  17. Gorai, A.K., Raval, S., Patel, A.K., Chatterjee, S., & Gautam, T. (2021). Design and development of a machine vision system using artificial neural network-based algorithm for automated coal characterization. International Journal of Coal Science & Technology, (8), 737-755. https://doi.org/10.1007/s40789-020-00370-9
  18. Samanta, B., Bandopadhyay, S., Ganguli, R., & Dutta, S. (2004). Sparse data division using data segmentation and Kohonen network for neural network and geostatistical ore grade modeling in Nome offshore placer deposit. Natural Resources Research, 13(3), 189-200. https://doi.org/10.1023/b:narr.0000046920.95725.1b
  19. Abuntori, C.A., Al-Hassan, S., & Mireku-Gyimah, D. (2021). Assessment of ore grade estimation methods for structurally controlled vein deposits – A review. Ghana Mining Journal, 21(1), 31-44. https://doi.org/10.4314/gm.v21i1.4
  20. Tahmasebi, P., & Hezarkhani, A. (2010). Comparison of optimized neural network with fuzzy logic for ore grade estimation. Australian Journal of Basic and Applied Sciences, 4(5), 764-772.
  21. Domingos, P. (2012). A few useful things to know about machine learning. Communication of the ACM, 55(10), 78-87. https://doi.org/10.1145/2347736.2347755
  22. Hellal, F., El-Sayed, S., Zewainy, R., & Amer, A. (2019). Importance of phosphate pock application for sustaining agricultural production in Egypt. Bulletin of the National Research Centre, 43(1), 11. https://doi.org/10.1186/s42269-019-0050-9
  23. Ahmed, S., & Rizk, M.E. (2022). Highlights on the beneficiation trials of the Egyptian phosphate ores. Journal of Engineering Sciences, 50(1), 1-21. https://doi.org/10.21608/jesaun.2021.100795.1083
  24. Schewe, M., Müller, P., Korte, T., & Herrmann, A. (1992). The role of phospholipid asymmetry in calcium-phosphate-induced fusion of human erythrocytes. Journal of Biological Chemistry, 267(9), 5910-5915. https://doi.org/10.1016/s0021-9258(18)42640-3
  25. El-Shafeiy, M., Birgel, D., El-Kammar, A., El-Barkooky, A., Wagreich, M., Mohamed, O., & Peckmann, J. (2014). Palaeoecological and post-depositional changes recorded in Campanian-Maastrichtian black shales, Abu Tartur plateau, Egypt. Cretaceous Research, (50), 38-51. https://doi.org/10.1016/j.cretres.2014.03.022
  26. Elmaadawy, Kh.G., Ezz El Din, M., Khalid, A.M., & Seifelnasr, A.A. (2015). Mineral industry in Egypt – Part II Non-metallic commodities – phosphate rocks. Journal of Mining World Express, 4(0), 1.
  27. Yu, Z., Haghighat, F., Fung, B.C.M., & Yoshino, H. (2010). A decision tree method for building energy demand modeling. Energy Build, (42), 1637-1646. https://doi.org/10.1016/j.enbuild.2010.04.006
  28. Cristianini, N., & Shawe-Taylor, J. (2000). An introduction to support vector machines and other kernel-based learning methods. Cambridge, United Kingdom: Cambridge University Press, 189 p. https://doi.org/10.1017/CBO9780511801389
  29. Steinwart, I., & Christmann, A. (2008). Support vector machines. Berlin/Heidelberg, Germany: Springer Science & Business Media, 610 p.
  30. Tipping, M. (2001). Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research, (1), 211-244.
  31. Archambeau, C., Cornford, D., Opper, M., & Shawe Taylor, J. (2007). Gaussian process approximations of stochastic differential equations. Journal of Machine Learning Research, (1), 1-16.
  32. Atia, M.M., Noureldin, A., & Korenberg, M. (2012). Enhanced Kalman filter for RISS/GPS integrated navigation using Gaussian process regression. Proceedings of the Institute of Navigation International Technical Meeting, 1148-1156.
  33. Chen, H.M., Cheng, X.H., Wang, H., & Han, X. (2014). Dealing with observation outages within navigation data using Gaussian process regression. Journal of Navigation, 67(4), 603-615. https://doi.org/10.1017/S0373463314000010
  34. Bailer-Jones, C.A.L., Sabin, T.J., MacKay, D.J.C., & Withers, P.J. (1997). Prediction of deformed and annealed microstructures using Bayesian neural networks and Gaussian processes. Proceedings of the Australasia Pacific Forum on Intelligent Processing and Manufacturing of Materials, 913-919.
  35. Rasmussen, С.E., & Williams, C. (2006). Gaussian processes for machine learning. Cambridge, United States: MIT Press, 248 p. https://doi.org/10.7551/mitpress/3206.001.0001
  36. Nathan, D., Thanigaiyarasu, G., Vani, K., & India, C. (2016). Compasison of artificial neural network approach and data mining technique for the prediction of surface roughness in end milled components with texture images. International Journal of Advanced Engineering Technology, (592), 587.
  37. Duong, V.-H., Ly, H.-B., Trinh, D. H., Nguyen, T. S., & Pham, B. T. (2021). Development of Artificial Neural Network for prediction of radon dispersion released from Sinquyen Mine, Vietnam. Environmental Pollution, (282), 116973. https://doi.org/10.1016/j.envpol.2021.116973
  38. Mustafa, M.R., Rezaur, R.B., Saiedi, S., & Isa, M.H. (2012). River suspended sediment prediction using various multilayer perceptron neural network training algorithms – A case study in Malaysia. Water Resources Management, 26(7), 1879-1897. https://doi.org/10.1007/s11269-012-9992-5
  39. Webster, R., & Oliver, M.A. (2007). Geostatistics for environmental scientists. Hoboken, United States: John Wiley & Sons Ltd, 318 p. https://doi.org/10.1002/9780470517277
  40. Isaaks, E., & Srivastava, R. (1989). Applied geostatistics. New York, United States: Oxford University Press, 582 p.
  41. Kennedy, K.H. (2009). Introduction to 3D data. Hoboken, United States: John Wiley & Sons Ltd, 332 p.
  42. Longley, P.A., Goodchild, M.F., Maguire, D.J., & Rhind, D.W. (2005). Geographical information systems and science. Chichester, United Kingdom: John Wiley & Sons Ltd.
  43. Kaplan, U.E., Dagasan, Y., & Topal, E. (2021). Mineral grade estimation using gradient boosting regression trees. International Journal of Mining, Reclamation and Environment, 35(10), 728-742. https://doi.org/10.1080/17480930.2021.1949863
  44. Лицензия Creative Commons