Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Optimization of gas recycling technique in development of gas-condensate fields

Serhii Matkivskyi1

1JSC “Ukrgazvydobuvannia”, Kyiv, Ukraine


Min. miner. depos. 2023, 17(1):101-107


https://doi.org/10.33271/mining17.01.101

Full text (PDF)


      ABSTRACT

      Purpose. The research purpose is to increase the efficiency of development of gas condensate fields with a high condensate yield in the reservoir gas and to develop optimal ways of increasing their hydrocarbon recovery.

      Methods. The effectiveness of the implementation of reservoir pressure maintenance technologies using dry gas for the development of gas condensate fields with a high condensate yield in the reservoir gas is studied on the basis of a heterogeneous 3D model using the Schlumberger Eclipse and Petrel software packages. The technological indicators of the development of gas-condensate reservoir are studied for different pressure values at the beginning of the dry gas injection. Calculations were made for pressures at the beginning of injection at the level of: 1.0 Рinit; 0.8 Рinit; 0.6 Рinit; 0.4 Рinit; 0.2 Рinit.

      Findings. It has been determined that when the dry gas is injected into a gas-condensate reservoir, reservoir pressure is maintained at a significantly higher level than it is in the case of depletion. This ensures stable operation of production wells over a longer period of the reservoir development. According to the research results, it should be noted that in the case of implementation of the reservoir pressure maintenance technology, a part of the precipitated condensate is transferred to the gas phase, which makes it necessary to extract it together with the reservoir gas. Based on the modeling results, the ultimate condensate recovery factor have been calculated. The calculation results indicate that in the case of the cycling process implementation, the ultimate condensate recovery factor of the gas-condensate reservoir increases by 7.26% compared to depletion development.

      Originality. Based on the calculation data analysis, the optimal pressure value at the beginning of dry gas injection into a gas-condensate reservoir has been determined, which is 0.842 Рinit.

      Practical implications. The use of the conducted research results will optimize the development system of gas-condensate fields with high initial condensate yield in the reservoir gas and increase the efficiency of development the explored hydrocarbon reserves in the conditions of a significant shortage of hydrocarbon raw materials in Ukraine. The conducted research results indicate the high technological efficiency of the reservoir pressure maintenance technology using dry gas.

      Keywords: 3D modeling, deposit, retrograde condensation, hydrocarbon recovery, technologies, cycling process


      REFERENCES

  1. Whitson, C.H., & Kuntadi, A. (2005). Khuff gas condensate development. International Petroleum Technology Conference, 10692. https://doi.org/10.2523/IPTC-10692-MS
  2. Kondrat, R.M. (1992). Gazokondensatootdacha plastov. Moskva, Rossiya: Nedra, 255 s.
  3. Burachok, O., Kondrat, O., & Matkivskyi, S. (2020). Investigation of the efficiency of gas condensate reservoirs waterflooding at different stages of development. E3S Web of Conference, (230), 01010. https://doi.org/10.1051/e3sconf/202123001010
  4. Li, D.G., & Nikens, M.U. (2008). Ekspluatatsiya obvodnya-yushchikhsya gazovykh skvazhin. Moskva, Rossiya: Premium Inzhiniring, 348 s.
  5. Firoozabadi, A., Olsen, G., & Golf-Racht, V.T. (1987). Residual gas saturation in water-drive gas reservoir. SPE California Regional Meeting, 319-322. https://doi.org/10.2118/16355-MS
  6. Matkivskyi, S. (2022). Increasing hydrocarbon recovery of Hadiach field by means of CO2 injection as a part of the decarbonization process of the energy sector in Ukraine. Mining of Mineral Deposits, 16(1), 114-120. https://doi.org/10.33271/mining16.01.114
  7. Matkivskyi S., Kondrat O., Burachok O. (2020). Investigation of the influence of the carbon dioxide (CO2) injection rate on the activity of the water pressure system during gas condensate fields development. E3S Web of Conference, (230), 01110. https://doi.org/10.1051/e3sconf/202123001011
  8. Oldenburg, С.M., Law, D.H., Gallo, Y.L., & White, S.P. (2003). Mixing of CO2 and CH4 in gas reservoirs: Code comparison studies. Proceedings of the 6th International Conference on Greenhouse Gas Control Technologies, (I), 443-448. https://doi.org/10.1016/B978-008044276-1/50071-4
  9. Matkivskyi, S., & Kondrat, O. (2021). Studying the influence of the carbon dioxide injection period duration on the gas recovery factor during the gas condensate fields development under water drive. Mining of Mineral Deposits, 15(2), 95-101. https://doi.org/10.33271/mining15.02.095
  10. Matkivskyi, S., & Kondrat, O. (2021). The influence of nitrogen injection duration at the initial gas-water contact on the gas recovery factor. Eastern-European Journal of Enterprise Technologies, 1(6(109), 77-84. https://doi.org/10.15587/1729-4061.2021.224244
  11. Bikman, Ye.S. (2017). Optymizatsiia saiklinh-protsesu v umovakh rozrobky famenskykh pokladiv Tymofiivskoho ta Kulychykhynskoho NHKR. Naftohazova Enerhetyka, 89-93.
  12. Chibueze, S.E., Ibeh, S.U., Onugha, I.N., & Obah, B. (2017). Performance analysis of gas cycling operation in retrograde gas condensate reservoir – A Niger Delta case study. SPE Nigeria Annual International Conference and Exhibition. https://doi.org/10.2118/189135-MS
  13. Gurevich, G.R. (1985). Sposoby povysheniya kondensatootdachi plastov. Itogi Nauki i Tekhniki. Seriya Razrabotka Neftyanykh i Gazovykh Mestorozhdeniy, (16), 132-184.
  14. Fishlock, T.P., & Probert, C.J. (1996). Waterflooding of gas-condensate reservoirs. SPE Reservoir Engineering, 11(04), 245-251. https://doi.org/10.2118/35370-PA
  15. El-Banbi, A.H., Aly, A.M., Lee, W.J., & W.D. McCain, Jr. (2000). Investigation of waterflooding and gas recycling for developing a gas-condensate reservoir. SPE/CERI Gas Technology Symposium. https://doi.org/10.2118/59772-MS
  16. Abdul-Latif, B.L., Dziwornu, C.K., Ha, N.P., & Riverson, O. (2016). Modeling and optimization of waterflooding in gas condensate reservoirs. SPE Russian Petroleum Conference and Exhibition. https://doi.org/10.2118/182058-MS
  17. Kondrat, O.R. (2000). Eksperymental’ni doslidzhennia vytisnennia skondensovanykh vuhlevodniv z hazokondensatnykh rodovyshch rozchynamy PAR. Naftova i Hazova Promyslovist’, (1), 34-38.
  18. Mamora, D.D., & Seo, J.G. (2002). Enhanced gas recovery by carbon dioxide sequestration in depleted gas reservoirs. SPE Annual Technical Conference and Exhibition. https://doi.org/10.2118/77347-MS
  19. Sim, S.S.K., Turta, A.T., Singhal, A.K., & Hawkins, B.F. (2008). Enhanced gas recovery: Factors affecting gas-gas displacement efficiency. Canadian International Petroleum Conference. https://doi.org/10.2118/2008-145
  20. Sim, S.S.K., Brunelle, P., Turta, A.T., & Singhal, A.K. (2008). Enhanced gas recovery and CO2 sequestration by injection of exhaust gases from combustion of bitumen. SPE Symposium on Improved Oil Recovery. https://doi.org/10.2118/113468-MS
  21. Canchucaja, R. (2008). Osushchestvimost’ zakachki azota v mnogoplastovuyu zalezh’, soderzhashchuyu sukhoy gazokondensat. SPE Rus-sian Petroleum Technology Conference.
  22. Surguchev, M.L. (1985). Vtorichnyye i tretichnyye metody uvelicheniya nefteotdachi plastov. Moskva, Rossiya: Nedra, 308 s
  23. Balint, V., Ban, A., & Doleshan, Sh. (1977). Primeneniye uglekislogo gaza v dobyche nefti. Moskva, Rossiya: Nedra, 240 s.
  24. Babalyan, G.A. (1976). Primeneniye karbonizirovannoy vody dlya uvelicheniya nefteotdachi. Moskva, Rossiya: Nedra, 144 s.
  25. Al-Hashami, A., Ren, S.R., & Tohidi, B. (2005). CO2 injection for enhanced gas recovery and geo-storage reservoir simulation and economics. SPE Europec/EAGE Annual Conference. https://doi.org/10.2118/94129-MS
  26. Kondrat, R.M. (1982). Povysheniye kondensatootdachi produktivnykh plastov s primeneniyem zavodneniya. Razrabotka i Ekspluatatsiya Gazovykh i Gazokondensatnyk Mestorozhdeniy, (7), 57.
  27. Thomas, F., Holowach, N., Zhou, X., & Bennion, D. (1994) Optimizing production from gas condensate reservoirs. Annual Technical Meeting. https://doi.org/10.2118/94-04
  28. Seah, Y., Gringarten, A., Giddins, M., & Burton, K. (2014). Optimising recovery in gas condensate reservoirs. SPE Asia Pacific Oil & Gas Conference and Exhibition. https://doi.org/10.2118/171519-MS
  29. Taber, J.J., Martin, F.D., & Seright R.S. (1997). EOR screening criteria revisited - part 2: applications and impact of oil prices. SPE Reservoir Engineering, 12(03), 199-206. https://doi.org/10.2118/39234-PA
  30. Yushchenko, T.S., & Brusilovskiy, A.I. (2015). Effektivnyy metod po-stroyeniya i adaptatsii PVT-modeley plastovykh flyuidov gazo-kondensatnykh mestorozhdeniy i gazovykh shapok neftegazokon-densatnykh zalezhey. Neftyanoe Khozyaystvo, (1), 56-60.
  31. Whitson, C.H., & Brule, M.R. (2000). Phase behavior. Richardson, United States: SPE Monograph Series. https://doi.org/10.2118/9781555630874
  32. Matkivskyi, S., & Burachok, O. (2022). Impact of reservoir heterogeneity on the control of water encroachment into gas-condensate reservoirs during CO2 injection. Management Systems in Production Engineering, 30(1), 62-68. https://doi.org/10.2478/mspe-2022-0008
  33. Лицензия Creative Commons