Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Slope failure characterization: A joint multi-geophysical and geotechnical analysis, case study of Babor Mountains range, NE Algeria

Leila Boubazine1, Abderahmene Boumazbeur2, Riheb Hadji3, Kessasra Fares1

1Jijel University, Jijel, Algeria

2University of Tebessa, Tebessa, Algeria

3Laboratory of Applied Researches in Engineering Geology, Geotechnics, Water Sciences, and Environment, Setif 1 University, Sétif, Algeria

Min. miner. depos. 2022, 16(4):65-70


https://doi.org/10.33271/mining16.04.065

Full text (PDF)


      ABSTRACT

      Purpose. The research purpose is to apply an original combined approach to the study of landslide occurrence in the Tarzoust region, based on geophysical approaches. This is extremely important because landslides damage roads and buildings in many parts of North Africa, especially in the city of Tarzoust, NE Algeria. Significant slope failures have resulted in serious disasters in the region.

      Methods. In this study we use Vertical Electric Soundings (VES) and Seismic Refraction Method (SRM) for underground exploration, as well as Electrical Resistivity Tomography (ERT) to support the latter two methods.

      Findings. The clayey nature of the terrain is confirmed, very often covered by a mantle of superficial colluvium formations. The depth of the bedrock and shear surface has been precisely determined. The ERT reveals that the terrain has already experienced instability in the past.

      Originality. The originality of this study is in the combination of data from various sources and different approaches for the purpose of planning the deployment and use of land.

      Practical implications. Our approach has proven that the combination of geological and geotechnical data with geophysical deterministic methods can help engineers and decision-makers in land management. Our recommendations consist of topographic, inclinometric and piezometric monitoring for slip development and the effectiveness of reinforcement measures for new housing, and equipment programs for regional planning.

      Keywords: slope failures, tomography, resistivity, seismic refraction, substratum


      REFERENCES

  1. Dikshit, A., Sarkar, R., Pradhan, B., Segoni, S., & Alamri, A.M. (2020). Rainfall induced landslide studies in Indian Himalayan region: A critical review. Applied Sciences, 10(7), 2466. https://doi.org/10.3390/app10072466
  2. Guzzetti, F., Gariano, S.L., Peruccacci, S., Brunetti, M.T., & Melillo, M. (2022). Rainfall and landslide initiation. Rainfall (pp. 427-450). Amsterdam, Netherlands: Elsevier.https://doi.org/10.1016/B978-0-12-822544-8.00012-3
  3. Achour, Y., & Pourghasemi, H.R. (2020). How do machine learning techniques help in increasing accuracy of landslide susceptibility maps? Geoscience Frontiers, 11(3), 871-883. https://doi.org/10.1016/j.gsf.2019.10.001
  4. Thennavan, E., Ganapathy, G.P., Chandrasekaran, S., & Rajawat, A. (2020). Probabilistic rainfall thresholds for shallow landslides initiation – A case study from The Nilgiris district, Western Ghats, India. International Journal of Disaster Risk Management, 2(1), 1-14. https://doi.org/10.18485/ijdrm.2020.2.1.1
  5. Karim, Z., Hadji, R., & Hamed, Y. (2019). GIS-based approaches for the landslide susceptibility prediction in Setif Region (NE Algeria). Geotechnical and Geological Engineering, 37(1), 359-374. https://doi.org/10.1007/s10706-018-0615-7
  6. Lukić, T., Bjelajac, D., Fitzsimmons, K.E., Marković, S.B., Basarin, B., Mlađan, D., & Samardžić, I. (2018). Factors triggering landslide occurrence on the Zemun loess plateau, Belgrade area, Serbia. Environmental Earth Sciences, 77(13), 1-15. https://doi.org/10.1007/s12665-018-7712-z
  7. Hadji, R., Chouabi, A., Gadri, L., Raïs, K., Hamed, Y., & Boumazbeur, A. (2016). Application of linear indexing model and GIS techniques for the slope movement susceptibility modeling in Bousselam upstream basin, Northeast Algeria. Arabian Journal of Geosciences, (9), 192. https://doi.org/10.1007/s12517-015-2169-9
  8. Zahri, F., Boukelloul, M., Hadji, R., & Talhi, K. (2016). Slope stability analysis in open pit mines of Jebel Gustar career, NE Algeria – A multi-steps approach. Mining Science, (23), 137-146.
  9. Mateos, R.M., López-Vinielles, J., Poyiadji, E., Tsagkas, D., Sheehy, M., Hadjicharalambous, K., & Herrera, G. (2020). Integration of land-slide hazard into urban planning across Europe. Landscape and Urban Planning, (196), 103740. https://doi.org/10.1016/j.landurbplan.2019.103740
  10. Zeqiri, R.R., Riheb, H., Karim, Z., Younes, G., Mania, B., & Aniss, M. (2019). Analysis of safety factor of security plates in the mine “Trepça” Stantërg. Mining Science, (26), 21-36. https://doi.org/10.37190/msc192602
  11. Manchar, N., Benabbas, C., Hadji, R., Bouaicha, F., & Grecu, F. (2018). Landslide susceptibility assessment in Constantine Region (NE Algeria) by means of statistical models. Studia Geotechnica et Mechanica, 40(3), 208-219. https://doi.org/10.2478/sgem-2018-0024
  12. Šilhán, K. (2021). The dendrogeomorphic spatio-temporal reconstruction of flow-like landslides activity in one of the most susceptible region of Central Europe (the Vsetínské vrchy Mts.). Dendrochronologia, (67), 125830.https://doi.org/10.1016/j.dendro.2021.125830
  13. Mahdadi, F., Boumezbeur, A., Hadji, R., Kanungo, D.P., & Zahri, F. (2018). GIS-based landslide susceptibility assessment using statistical models: A case study from Souk Ahras province, NE Algeria. Arabian Journal of Geosciences, 11(17), 476.https://doi.org/10.1007/s12517-018-3770-5
  14. Deparis, J. (2007). Etude des éboulements rocheux par méthodes géophysiques. PhD Thesis. Grenoble, France: Université Joseph-Fourier-Grenoble I.
  15. Grandjean, G., & Guerin, R. (2013). Caractérisation physique des sols par méthodes géophysiques et télédétection: bilan et perspectives. Etude et Gestion des Sols, 20(2), 71-80.
  16. Carbonel, D., Rodríguez, V., Gutiérrez, F., McCalpin, J.P., Linares, R., Roqué, C., & Sasowsky, I. (2014). Evaluation of trenching, ground penetrating radar (GPR) and electrical resistivity tomography (ERT) for sinkhole characterization. Earth Surface Processes and Land-forms, 39(2), 214-227. https://doi.org/10.1002/esp.3440
  17. Mouici, R, Baali, F, Hadji, R, Boubaya, D, Audra, P., Fehdi, C.É., & Arfib, B. (2017) Geophysical, geotechnical, and speleologic assessment for karst-sinkhole collapse genesis in Cheria plateau (NE Algeria). Mining Science, (24), 59-71.
  18. Bouftouha, Y. (2000). Pétrologie, géochimie et métallogénie des skarns de la Kabylie de Collo (Nord-Est algérien), 250 p.
  19. Demdoum, A., Hamed, Y., Feki, M., Hadji, R., Djebbar, M. (2015). Multi-tracer investigation of groundwater in El Eulma Basin (North-western Algeria), North Africa. Arabian Journal of Geosciences, 8(5), 3321-3333. https://doi.org/10.1007/s12517-014-1377-z
  20. Piegari, E., Cataudella, V., Di Maio, R., Milano, L., Nicodemi, M., & Soldovieri, M.G. (2009). Electrical resistivity tomography and statistical analysis in landslide modelling: A conceptual approach. Journal of Applied Geophysics, 68(2), 151-158. https://doi.org/10.1016/j.jappgeo.2008.10.014
  21. Perrone, A., Lapenna, V., & Piscitelli, S. (2014). Electrical resistivity tomography technique for landslide investigation: A review. Earth-Science Reviews, (135), 65-82. https://doi.org/10.1016/j.earscirev.2014.04.002
  22. Besser, H., Mokadem, N., Redhaounia, B., Hadji, R., Hamad, A., & Hamed, Y., (2018) Groundwater mixing and geochemical assessment of low-enthalpy resources in the geothermal field of southwestern Tunisia. Euro-Mediterranean Journal for Environmental Integration, (3), 16. https://doi.org/10.1007/s41207-018-0055-z
  23. Lebourg, T. (2000). Analyse géologique et mécanique de glissements de terrain dans des moraines des Pyrénées centrales et occidentales (France). PhD Thesis.
  24. Jongmans, D., & Garambois, S. (2007). Geophysical investigation of landslides: A review. Bulletin de la Société géologique de France, 178(2), 101-112. https://doi.org/10.2113/gssgfbull.178.2.101
  25. Qiliang, S.U.N., Xinong, X.I.E., & Shiguo, W.U. (2021). Submarine landslides in the northern South China Sea: Characteristics, geohazard evaluation and perspectives. Earth Science Frontiers, 28(2), 258.
  26. McCann, D.M., & Forster, A. (1990). Reconnaissance geophysical methods in landslide investigations. Engineering Geology, 29(1), 59-78. https://doi.org/10.1016/0013-7952(90)90082-C
  27. González-Díez, A., Zarroca, M., Linares, R., Bruschi, V.M., Bonachea, J., de Terán, J.D., & Martín, S. (2017). The application of ERT for the geometrical analysis of the Sebrango landslide (Cantabrian Range, Spain). In Workshop on World Landslide Forum (pp. 349-355). Springer, Cham. https://doi.org/10.1007/978-3-319-53498-5_40
  28. Chabaane, A., Redhaounia, B., & Gabtni, H. (2017). Combined application of vertical electrical sounding and 2D electrical resistivity imaging for geothermal groundwater characterization: Hammam Sayala hot spring case study (NW Tunisia). Journal of African Earth Sciences, (134), 292-298. https://doi.org/10.1016/j.jafrearsci.2017.07.003
  29. Godio, A., & Bottino, G. (2001). Electrical and electromagnetic investigation for landslide characterization. Physics and Chemistry of the Earth, Part C: Solar, Terrestrial & Planetary Science, 26(9), 705-710. https://doi.org/10.1016/S1464-1917(01)00070-8
  30. Лицензия Creative Commons