Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Research into the influence of the thin ore body occurrence elements and stope parameters on loss and dilution values

Yerdulla Serdaliyev1, Yerkin Iskakov1, Bagdat Bakhramov2, Dikhan Amanzholov1

1Satbayev University, Almaty, Kazakhstan

2JSC AK Altynalmas, Almaty, Kazakhstan


Min. miner. depos. 2022, 16(4):56-64


https://doi.org/10.33271/mining16.04.056

Full text (PDF)


      ABSTRACT

      Purpose. Development of a methodology for determining the level of actual losses and dilution of ore based on the identified patterns of the influence of occurring ore body elements and the stope parameters when mining thin slope deposits using a system for delivering ore by the blasting force.

      Methods. The task set is solved using an integrated approach, including the analysis of literary sources and the existing practical experience on the issues of losses and dilution, conducting experimental-industrial experiments in the conditions of the Akbakai deposit to assess the recommended method effectiveness for determining the values of excess losses and dilution of ore, geomechanical assessment of the mass using the methods of limit equilibrium, numerical and probabilistic analyses.

      Findings. A methodology for determining losses and dilution when mining thin slope deposits using a system for delivering ore by the blasting force is proposed, which makes it possible to predict excess losses and dilution coefficients arising from stope roof caving and incomplete ore delivery. The actual losses and dilution of ores in the Akbakai deposit have been determined based on the proposed methodology and instrumental surveys. The developed methodology for determining the values of excess losses and dilution makes it possible to take preliminary measures to prevent the stope roof caving with the complete ore mass delivery using the blasting force.

      Originality. New dependences have been revealed for the conditions of the Akbakai deposit: logarithmic – the value of dilution depending on the angle of the ore body occurrence; polynomial – the stope maximum span depending on the ore body dip angle; exponential – ore losses depending on the angle of the ore body occurrence.

      Practical implications. The practical significance, confirmed in the course of pilot-experimental work, is in minimizing the percentage of loss and dilution of the useful component when mining thin slope ore deposits using a sublevel blast-hole stoping system with an open stope space, which makes it possible to reduce the cost of the produced mineral.

      Keywords: stability, rock caving, ore dilution, ore losses, stress-strain state, numerical analysis


      REFERENCES

  1. Elena, P., Anna, S., Zhanibek, Z., & Olefirenko, O. (2016). Towards economic security through diversification: case of Kazakhstan. Journal of Security & Sustainability Issues, 5(4), 509-519. https://doi.org/10.9770/jssi.2016.5.4(6)
  2. Bishimbayev, V., Nurasheva, K., & Lepesov, K. (2015). The world market of rare-earth metals and prospects of participation of Kazakhstan in it. Industrial Technology and Engineering, (3), 5-14.
  3. Underhill, J.R. (2012). Understanding and unlocking petroleum plays and fields in Kazakhstan: introduction. Petroleum Geoscience, 18(3), 251-251. https://doi.org/10.1144/1354-079311-095
  4. Tyrrall, D., Woodward, D., & Rakhimbekova, A. (2007). The relevance of international financial reporting standards to a developing country: Evidence from Kazakhstan. The International Journal of Accounting, 42(1), 82-110. https://doi.org/10.1016/j.intacc.2006.12.004
  5. Sobotka, B. (2020). What are the main value drivers of aluminium in Kazakhstan? Aluminium International Today, 33(1), 48-50.
  6. Bozhko, L.L. (2022). Challenges of anti-Russia sanctions for metals and mining enterprises in Kazakhstan. R-Economy, 8(3), 237-251. https://doi.org/10.15826/recon.2022.8.3.019
  7. Mizernaya, M., Dyachkov, B., Kusmina, O., Mizerny, A., & Oitseva, T. (2017). Main types of gold deposits of the eastern Kazakhstan. International Multidisciplinary Scientific GeoConference, 17(11), 299-306. https://doi.org/10.5593/sgem2017/11
  8. Bejsebaev, A.M., Bitimbaev, M.Zh., Krupnik, L.A., & Tsekhovoj, A.F. (2001). The role of central Asian mining and industrial union in the development of mining and metallurgical complex in Kazakhstan. Gornyi Zhurnal, (11), 10-13.
  9. Sarybayev, N.O., Chukharev, S.M., Rysbekov, K.B., Kuldeyev, Y.I., Tawakkuly, K., Hossaini, M., & Afzali, A. (2021). Modern state of iron ore mining. Engineering Journal of Satbayev University, 143(3), 34-38. https://doi.org/10.51301/vest.su.2021.i3.05
  10. Dyachkov, B.A., Bissatova, A.Y., Mizernaya, M.A., Zimanovskaya, N.A., Oitseva, T.A., Amralinova, B.B., & Orazbekova, G.B. (2021). Specific features of geotectonic development and ore potential in Southern Altai (Eastern Kazakhstan). Geology of Ore Deposits, 63(5), 383-408. https://doi.org/10.1134/S1075701521050020
  11. Begalinov, A. (2010). Programma “Zoloto Kazakhstana”. Gornyy Zhurnal Kazakhstana, (6), 8-10.
  12. Abishev, V.M., Globa, V.L., & Ershov, A.I. (1994). Aktual’nye zadachi ukrepleniya mineral’no-syr’evoy bazy zolota Kazakhstana. Geologiya Kazakhstana, (2), 4-13.
  13. Zhautikov, T.M., & Nikolaev, L.G. (1992). Zoloto Kazakhstana. Gornyy Zhurnal, (8), 16-20.
  14. Pysmennyi, S., Fedko, M., Shvaher, N., & Chukharev, S. (2020). Mining of rich iron ore deposits of complex structure under the conditions of rock pressure development. E3S Web of Conference, (201), 01022. https://doi.org/10.1051/e3sconf/202020101022
  15. Lyashenko, V. (2018). Safety improving of mine preparation works at the ore mines. Bezopasnost’ Truda v Promyshlennosti, (5), 53-59. https://doi.org/10.24000/0409-2961-2018-5-53-59
  16. Baimukhanbetova, E., Onaltayev, D., Daumova, G., Amralinova, B., & Amangeldiyev, A. (2020). Improvement of informational technologies in ecology. E3S Web of Conferences, (159), 01008. https://doi.org/10.1051/e3sconf/202015901008
  17. Stupnik, N., Kalinichenko, V., Kolosov, V., Pismennyy, S., & Shepel, A. (2014). Modeling of stopes in soft ores during ore mining. Metallurgical and Mining Industry, 6(3), 32-37.
  18. Khomyakov, V.A., Iskakov, E.E., & Serdaliev, E.T. (2013). Investigation of gravelly soil during underground construction in Almaty. Soil Mechanics and Foundation Engineering, 50(4), 171-177. https://doi.org/10.1007/s11204-013-9230-z
  19. Bekseitova, R.T., Veselova, L.K., Kasymkanova, K.M., Jangulova, G.K., Tumazhanova, S., Bektur, B., & Beisembina, G.T. (2016). Preliminary discussions on impacts of industrial induced factors on the environment of Central Kazakhstan. Journal of Landscape Ecology, 9(3), 50-65. https://doi.org/10.1515/jlecol-2016-0014
  20. Dakieva, K.Z., Tusupova, Z.B., Zhautikova, S.B., Loseva, I.V., Dzhangozina, D.N., Beysembaeva, R.S., & Zhamanbaeva, M.K. (2018). Studying the benefits of green workplace environment on health promotion in sympathoadrenal and kallikrein-kinin systems. Ekoloji, 27(106), 1087-1097.
  21. Zhautikov, F.B., Isagulov, A.Z., Zhautikov, B.A., Romanov, V.I., & Babenko, A.A. (2019). Development and implementation of a device for the separation of metal and slag during tundish filling. Metallurgist, 63(7-8), 672-674. https://doi.org/10.1007/s11015-019-00874-z
  22. Abdikadirova, K.R., Amreyeva, K.Y., Zhautikova, S.B., Kostyleva, O.A., Abikenova, F.S., Chergizova, B.T., Talaspekova, Y., & Atshabarova, S.S. (2020). Morphological changes in the hepatic tissue at the impact of industrial copper-bearing dust in the experiment. Open Access Macedonian Journal of Medical Sciences, (8), 653-656. https://doi.org/10.3889/oamjms.2020.3473
  23. Abdikadirova, H.R., Amreeva, K.E., Kalishev, M.G., & Zhautikova, S.B. (2019). Evaluation of the effectiveness of alimentary correction of pathological changes in hepatic tissue under the inf fluence of industrial copper-containing dust in the experiment. Promyshlennaya Ekologiya, 59(7), 438-443. https://doi.org/10.31089/1026-9428-2019-59-7-438-443
  24. Nazarchik, A.F. (1972). Issledovanie effektivnosti razrabotki zhil’nykh mestorozhdeniy. Moskva, Rossiya: Nauka, 265 s.
  25. Lyahov, A.I. (1984). Tekhnologiya razrabotki zhil’nykh mestorozhdeniy. Moskva, Rossiya: Nedra, 240 s.
  26. Serdaliyev, Y., & Iskakov, Y. (2022). Research into electro-hydraulic blasting impact on ore masses to intensify the heap leaching process. Mining of Mineral Deposits, 16(1), 52-57. https://doi.org/10.33271/mining16.01.052
  27. Malanchuk, Z., Moshynskyi, V., Stets, S., Ignatiuk, I., & Galiyev, D. (2020). Modelling hydraulic mixture movement along the extraction chamber bottom in case of hydraulic washout of the puff-stone. E3S Web of Conference, (201), 01011. https://doi.org/10.1051/e3sconf/202020101011
  28. Naduty, V., Malanchuk, Z., Malanchuk, Y., & Korniyenko, V. (2016). Research results proving the dependence of the copper concentrate amount recovered from basalt raw material on the electric separator field intensity. Eastern-European Journal of Enterprise Technologies, 5(5(83)), 19-24.https://doi.org/10.15587/1729-4061.2016.79524
  29. Begalinov, A. (2014). Razrabotka strukturnoy modeli i tekhniko-tekhnologicheskikh sposobov podderzhaniya geosistemy “massiv-tekhnologiya-podzemnoe sooruzhenie” pri podzemnoy razrabotke zolotorudnykh mestorozhdeniy (Akbakay, Bakyrchik, Maykain) i kompleksnoy mekhanizatsii vedeniya gornykh rabot pri osvoenii grupp mestorozhdeny zolota (Akbakay). Otchet o NIR #0112RK02709 (zaklyuchitel’nyy). Almaty, Kazakhstan, 158 s.
  30. Güngor, E., & Esen, S. (2017). Wall control blasting practices at Kısladag gold mine. Proceeding of the 43rd Annual Conference on Explosives & Blasting Technique, 1-10.
  31. Rafienko, D.I. (1986). Sovershenstvovanie razrabotki zhil’nykh mestorozhdeniy. Moskva, Rossiya: Nauka, 216 s.
  32. Begalinov, A., Serdaliyev, Y., Abshayakov, E., Bakhramov, B., & Baigenzhenov, O. (2015). Extraction technology of fine vein gold ores. Metallurgical and Mining Industry, 7(4), 312-320.
  33. Daukeev, S.Zh. (1994). Zolotoy potentsial Kazakhstana. Mineral’nye resursy Kazakhstana, (1), 9-10.
  34. Mathews, K.E., Hoek, E., Wyllie, D.C., & Stewart, S.B.V. (1980). Prediction of stable excavation spans for mining at depths below 1,000 meters in hard rock. Golder Associates Report to Canada Centre for Mining and Energy Technology. Ottawa, Canada: Department of Energy and Resources.
  35. Potvin, Y., Hudyma, M.R., & Miller, H.D.S. (1989). Design guidelines for open stope support. CIM Bulletin, 82(926), 53-62.
  36. Trueman, R., Mikula, P., Mawdesley, C., & Harries, N. (2000). Experience in Australia with the application of the Mathews’ method for open stope design. CIM Bulletin, 93(1036), 162-167.
  37. Лицензия Creative Commons