Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Analytical and numerical study of one-dimensional and two-dimensional stress distribution within an elastic semi-infinite material under the action of an arbitrary rectangular uniform loading

Farid Sh. Maleki1, Hamid Chakeri2, Sajjad Chehreghani3, Hossein Azad Soula2

1University of Tehran, Tehran, Iran

2Sahand University of Technology, Tabriz, Iran

3Urmia University, Urmia, Iran


Min. miner. depos. 2022, 16(4):47-55


https://doi.org/10.33271/mining16.04.047

Full text (PDF)


      ABSTRACT

      Purpose. The study of stress distribution within an elastic semi-infinite material under the action of an external loading is of great importance in the theory of elasticity. In most cases, the lack of knowledge about the stress distribution within a material can result in incomplete and inappropriate engineering designs, leading to unsatisfactory consequences. The latter include cracks and fractures, created inside the concrete segmental lining in TBM tunneling, as well as indentations that occur in floors due to the lack of pillar design not only in underground mining, but even in civil projects. This study focuses on the one-dimensional and two-dimensional internal stress distribution induced by arbitrary rectangular–square loading, in other words, that applied to an elastic semi-infinite material.

      Methods. Firstly, this paper uses an analytical method and, subsequently, a numerical method. In the analytical study, the point load equations of Boussinesq and Westergaard are used. Extending these equations to the rectangular loading area, four new equations are introduced. Using the Abaqus finite element software, the numerical study is performed in 3D space.

      Findings. The results show that the answers from the introduced equations are in high consistency with numerical ones. However, the result of the extended Boussinesq point load equation is closer to the answer obtained by the numerical method.

      Originality. Four new equations, presented in this paper, describe one-dimensional and two-dimensional stress distribution.

      Practical implications. The presented equations can provide a simple and convenient way to solve rectangular load problems in many cases such as foundation, civil and mining projects. This study uses initial information on specific segments in the Tabriz Metro line-2 Project.

      Keywords: stress distribution, rectangle, semi-infinite, Boussinesq, Westergaard


      REFERENCES

  1. Lama, B., & Clapeyron, G. (2009). Mémoire sur l'équilibre intérieur des corps solides homogènes. Journal für die Reine und Angewandte Mathematik, 7(391-423), 33. https://doi.org/10.1515/crll.1831.7.145
  2. Boussinesq, J. (1885). Application des potentiels à l’étude de l’équilibre et du mouvement des solides élastiques: Principalement au calcul des déformations et des pressions que produisent, dans ces solides, des efforts quelconques exercés sur une petite partie de leur surface ou de leur intérieur: mémoire suivi de notes étendues sur divers points de physique, mathematique et d’analyse (pp. 1842-1929). Paris, France: Gauthier-Villars.‏
  3. Love, A.E.H. (1929). IX. The stress produced in a semi-infinite solid by pressure on part of the boundary. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 228(659-669), 377-420.‏ https://doi.org/10.1098/rsta.1929.0009
  4. Terazawa, K.I. (1916). On the elastic equilibrium of a semi-infinite solid under given boundary conditions. Journal of the College of Science, 14-24.‏
  5. Sadd, M.H. (2009). Elasticity: Theory, applications, and numerics. Cambridge, United States: Academic Press, 600 p.‏
  6. Newmark, N.M. (1942). Influence charts for computation of stresses in elastic foundations. Urbana, United States: University of Illinois, 40 p.‏
  7. Fadum, R.E. (1941). Influence values for vertical stresses in a semi-infinite elastic solid due to surface loads.‏ Cambridge, United States: Harvard University, 19 p.
  8. Steinbrenner, W. (1934). Tafeln zur setzungsberechnung. Die StraBe.‏
  9. Westergaard, H. (1939). A problem of elasticity suggested by a problem in soil mechanics: Soft material reinforced by numerous strong horizontal sheets (pp. 120-130). Cambridge, United States: Harvard University.
  10. Hognestad, E. (1951). Study of combined bending and axial load in reinforced concrete members. Urbana, United States: University of Illinois, 134 p.
  11. Kent, D.C., & Park, R. (1971). Flexural members with confined concrete. Journal of the Structural Division, 97(7), 1969-1990.‏ https://doi.org/10.1061/JSDEAG.0002957
  12. Popovics, S. (1973). A numerical approach to the complete stress-strain curve of concrete. Cement and Concrete Research, 3(5), 583-599.‏ https://doi.org/10.1016/0008-8846(73)90096-3
  13. Tsai, W.T. (1988). Uniaxial compressional stress-strain relation of concrete. Journal of Structural Engineering, 114(9), 2133-2136.‏ https://doi.org/10.1061/(ASCE)0733-9445(1988)114:9(2133)
  14. Reddiar, M.K.M. (2010). Stress-strain model of unconfined and confined concrete and stress-block parameters. PhD Thesis. College Station, United States: Texas A&M University.‏
  15. Cornelissen, H., Hordijk, D., & Reinhardt, H. (1986). Experimental determination of crack softening characteristics of normal weight and lightweight. Heron, 31(2), 45-46.
  16. Лицензия Creative Commons