Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Characterization of Buleleng clay and improvement of its ceramic properties

Komang Nelly Sundari1, Subari1, Bagus Dinda Erlangga2

1Creative Functional Ceramics Research Group, National Research and Innovation Agency, Denpasar, Indonesia

2Research Center for Geological Resources, National Research and Innovation Agency, Bandung, Indonesia

Min. miner. depos. 2022, 16(4):29-33

Full text (PDF)


      Purpose. The research focuses on the improvement of local clay-based ceramic pottery bodies from Alas Angker in Buleleng Regency in Bali. The main purpose is to utilize the clay which meets the standards of ceramics such as smooth and hard earthenware, especially to reduce its water absorption property.

      Methods. Firstly, the clay is analyzed for its physical and chemical composition. Two ceramic body formulations are made using the clay with the BWNAA1 and BWNAA2 codes. The specimens are measured in terms of clay ceramics properties including plasticity, dry shrinkage, firing shrinkage and water absorption. The cracked ceramic products are also analyzed for a comparison.

      Findings. The ceramic properties show similar results, except for the water absorption percentage. The BWNAA2 code formulation has lower water absorption rate by 10.8% and meets the requirements for the type of smooth and hard earthenware body in compliance with the national standard SNI:7275-2018. The water absorption rate is about half of the existing products, which is effective in avoiding the problem of cracks.

      Originality. Comparison of the existing ceramic products and specimens made in this study shows a significant difference in water absorption and crack growth. Adding a certain amount of kaolin, feldspar, ball clay and quartz sand has significantly reduced the water absorption rate of ceramic bodies.

      Practical implications. This research can be a potential solution to increase the quality of ceramic pottery products in the vicinity of Buleleng Regency which use the clay of this kind.

      Keywords: Buleleng clay, conventional ceramic, ceramic body, water absorption


  1. Bó, M.D., & Hotza, D. (2013). Using recycled ceramics to make new triaxial ceramics. Refractories and Industrial Ceramics, 54(3), 243-250.
  2. Othman, R., & Mohamad, M. (2016). Firing behaviour of ceramic whiteware bodies incorporated with local feldspathic sources. Jurnal Teknologi, 78(10-3), 19-23.
  3. Subari, Erlangga, B.D., & Daryanto (2021). Iron removal from Banjarnegara feldspar by dry high-intensity magnetic separation. AIP Conference Proceedings, (2384), 080001.
  4. Serra, M.F., Conconi, M.S., Suarez, G., Aglietti, E.F., & Rendtorff, N.M. (2015). Volcanic ash as flux in clay based triaxial ceramic materials, effect of the firing temperature in phases and mechanical properties. Ceramics International, 41(5), 6169-6177.
  5. Hubadillah, S.K., Othman, M.H.D., Matsuura, T., Ismail, A.F., Rahman, M.A., Harun, Z., & Nomura, M. (2018). Fabrications and applications of low cost ceramic mem-brane from kaolin: A comprehensive review. Ceramics International, 44(5), 4538-4560.
  6. Ngun, B.K., Mohamad, H., Katsumata, K. Ichi, Okada, K., & Ahmad, Z.A. (2014). Using design of mixture experiments to optimize triaxial ceramic tile compositions incorporating Cambodian clays. Applied Clay Science, (87), 97-107.
  7. Gonggo, S.T. (2001). Analisa mineral lempung kelurahan tatura palu sulteng sebagai bahan dasar keramik. Jurnal Kimia Tadulako, 2(2), 33-34.
  8. Garinas, W. (2009). Karakteristik bahan baku kaolin untuk bahan pembuatan badan isolator listrik keramik porselen fuse cut out (FCO). Jurnal Sains Dan Teknologi Indonesia, 11(2), 120-125.
  9. Indiani, E., & Umiati, N.A.K. (2009). Keramik porselen berbasis feldspar sebagai bahan isolator listrik. TELKOMNIKA (Telecommunication Computing Electronics and Control), 7(2), 83.
  10. Gonggo, S.T., & Edyanti, F. (2013). Physicochemical characterization of clay minerals as a raw material of ceramic industry in Desa Lembah Bomban Kec. Bolano Lambunu Kab. Parigi Moutong. Akademika Kimia, 2(2), 105-113.
  11. Setiawan, N.I., Perdana, I., Syarifah, V., Buana, P.C., Setyowiyoto, M.D., Istinanda, R., Barianto, D.H., & An-sori, C. (2021). Characterization and identification of clay-material provenance from Bayat ceramic home industry in Klaten, Central Java, Indonesia. E3S Web of Conferences, (325), 06002.
  12. Nzeugang Nzeukou, A., Fagel, N., Njoya, A., Beyala Kam-gang, V., Eko Medjo, R., & Chinje Melo, U. (2013). Mineralogy and physico-chemical properties of alluvial clays from Sanaga valley (Center, Cameroon): Suitability for ceramic application. Applied Clay Science, (83-84), 238-243.
  13. Zaccaron, A., de Souza Nandi, V., Dal Bó, M., Arcaro, S., & Bernardin, A.M. (2022). The behavior of different clays subjected to a fast-drying cycle for traditional ceramic manufacturing. Journal of King Saud University – Engineering Sciences. In press.
  14. Aungatichart, P., & Wada, S. (2009). Correlation between Bigot and Ratzenberger drying sensitivity indices of red clay from Ratchaburi province (Thailand). Applied Clay Science, 43(2), 182-185.
  15. Abubakar, M., Muthuraja, A., Rajak, D.K., Ahmad, N., Pruncu, C.I., Lamberti, L., & Kumar, A. (2020). Influence of firing temperature on the physical, thermal and micro-structural properties of kankara kaolin clay: A preliminary investigation. Materials, 13(8), 1-8.
  16. Ardika, I.W., & Beratha, N.L.S. (2015). Crafters in the Ancient Bali Period. Badung, Bali: Udayana University Press.
  17. Sujana, G.A.P.P., Suardana, P., & Nugroho, T. (2019). The effect of firing temperature on water absorption and flexural strength on the preparation of stoneware ceramic (Coded-BL1P). Buletin Fisika, 20(1), 25.
  18. Hmeid, H.A., Akodad, M., Baghour, M., Moumen, A., Skalli, A., Azizi, G., Aalaoul, M., Gueddari, H., El Yousfi, Y., & Daoudi, L. (2022). Preliminary characterization and potential use of different clay materials from North-Eastern Morocco in the ceramic industry. Materials Today: Proceedings, (58), 1277-1284.
  19. National Standardization Body. (2018). SNI 7275:2018. Glazed ceramics – Tableware – Cutlery and drinking utensils. Jakarta, Indonesia, 11 p.
  20. Cannon, S.B., & Wynn, A.M. (1999). A new method for establishing the upper and lower limits of clay plastic behaviour. Interceram: International Ceramic Review, 48(1), 9-15.
  21. Cheng, X., Ke, S., Wang, Q., Wang, H., Shui, A., & Liu, P. (2012). Fabrication and characterization of anorthite-based ceramic using mineral raw materials. Ceramics International, 38(4), 3227-3235.
  22. National Standardization Body. (1989). SNI 03-1323:1989. Atterberg soil plasticity test. Jakarta, Indonesia, 3 p.
  23. Limpaiboon, K., & Nualanong, A. (2010). Influence of different additives at various contents on the properties of pottery clay body. Walailak Journal, 7(2), 155-167.
  24. Osemenam, R.A., Afeni, T.B., Alfred, V.A., & Onwualu-John, J.N. (2019). Evaluation of some ceramic properties of Gadabiu clay deposit (Kwali Area Council, Abuja, Nigeria). Mining of Mineral Deposits, 13(1), 9-15.
  25. Dondi, M., Guarini, G., Raimondo, M., & Salucci, F. (2003). Influence of mineralogy and particle size on the technological properties of ball clays for porcelain stoneware tiles. Tile & Brick International, 20(2), 2-11.
  26. Лицензия Creative Commons