Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

# Mathematical model to assess energy consumption using water inflow-drainage system of iron-ore mines in terms of a stochastic process

Oleg Sinchuk1, Ryszard Strzelecki2, Igor Sinchuk1, Теtуаnа Веridzе1, Vladyslav Fedotov1, Vladyslav Baranovskyi1, Kyrylo Budnikov1

1Kryvyi Rih National University, Kryvyi Rih, Ukraine

2Gdańsk University of Technology, Gdańsk, Poland

Min. miner. depos. 2022, 16(4):19-28

https://doi.org/10.33271/mining16.04.019

Full text (PDF)

ABSTRACT

Purpose is to develop a unified mathematical model to assess energy efficiency of a water inflow-drainage process as the real variant of stochastic method for water pumping from underground workings of iron-ore mines.

Methods. The research process was based upon the methods of probability theory as well as stochastic modelling methods. The stochastic function integration has been reduced to summation of its ordinates and further transition to a proper boundary.

Findings. A mathematical model of a water inflow-drainage system as a stochastic process has been developed in terms of input parameters of a standard operating iron-ore mine. The abovementioned has made it possible to assess realistically, substantiate, and obtain possibilities for a specific production facility as well as for generalization of the results involving determination of stochastic characteristics of drainage process.

Originality. For the first time, a mathematical model of drainage from underground levels of iron-ore mines has been developed as a stochastic process. The process characteristics have been identified relying upon randomness of a water pumping technique. In contrast to the available settings, the new model parameters characterize their dispersion. Possibility to obtain complete characteristics of energy consumption has been obtained: for drainage; for water accumulation volume in underground water collectors; for water pumping from the specified mine depths over the specific period as random processes. A number of drainage features have been analyzed and differentiated being determined with the help of nor-mal law of water accumulation velocity in the underground water collectors in iron-ore mines.

Practical implications. In terms of operating iron-ore mine, a generalized drainage mathematical model has been developed as a stochastic process using statistical data concerning water accumulation velocity in the underground water collectors. It has been proved that if the ordinates of water accumulation velocity in the underground water collectors obey the normal distribution law then it is expedient to characterize drainage as a stochastic process. The developed methods, studying drain-age as a stochastic process, help expand the research boundaries involving other auxiliary operations performed during underground mining of iron ore raw materials.

Keywords: efficiency, methodology, model, mine, drainage, stochastic process

REFERENCES

1. Pujades, E., Orban, P., Bodeux, S., Archambeau, P., Erpicum, S., & Dassargues, A. (2017). Underground pumped storage hydropower plants using open pit mines: How do groundwater exchanges influence the efficiency? Applied Energy, (190), 135-146. https://doi.org/10.1016/j.apenergy.2016.12.093
2. Alvarez, H., Dominguez, G., Ordofiez, A., Menendez, J., Alvarez, R., & Loredo, J. (2021). Mine water for the generation and storage of renewable energy: A hybrid hydro-wind system. International Journal of Environmental Research and Public Health, (18), 6758. https://doi.org/10.3390/ijerph18136758
3. Nel, W. (2015). The power of the worked-out mine: Conceptual designs for mine based pumped-storage hydroelectricity. MPES 2015 – Smart Innovation in Mining.
4. Menendoz, J., & Loredo, J. (2018). Use of abandoned underground mines for construction of pumped-storage hydro power plants and their influence on the electrical system. Proceedings of the XIV International Congress on Energy and Mineral Resources.
5. Brand, H., Vosloo, J., & Mathews, E. (2015). Automated energy efficiency project identification in the gold mining industry. Proceedings of the 13th Conference on the Industrial and Commercial Use of Energy, 17-22.https://doi.org/10.1109/ICUE.2015.7280241
6. Wu, T., Shieh, S., Jang, S., & Liu, C. (2005). Optimal energy management integration for a petrochemical plant under considerations of uncertain power supplies. IEEE Transactions on Power Systems, 20(3), 1431-1439. https://doi.org/10.1109/TPWRS.2005.852063
7. V Germanii ugol’nuyu shahtu prevratyat v gidroakkumuliruyushchuyu ektrostantsiyu. Retrieved from: https://geektimes.ru/post/287320/
8. Raykroft, M. (2017). Nebol’shie gidroakkumuliruyushchie sistemy: Novyy partner dlya vozobnovlyaemyh istochnikov energii. Tekhnologii i Biznes Dlya Razvitiya.
9. Wu, B., & Narimani, M. (2017). High-power converters and AC drives. Piscataway, United State: Wiley-IEEE Press, 480 p.https://doi.org/10.1002/9781119156079
10. Pearson, J. (1966). Decomposition, coordination and multilevel system. IEEE Transactions on Systems Science and Cybernetics, 2(1), 36-40.https://doi.org/10.1109/tssc.1966.300076
11. Sinchuk, O.N., Sinchuk, I.O., Guzov, E.S., Yalovaya, A.N., & Boyko, S.N. (2015). Potentsial elektroenergoeffektivnosti i puti ego realizatsii na proizvodstvakh s podzemnymi sposobami dobychi zhelezorudnogo syr’ya. Kremenchug, Ukraina: Shcherbatykh, 296 s.
12. Sіnchuk, І.O. (2019). Bazovі zasady formatyzatsіi struktury і algorytmu funktsіonuvannia avtomatyzovanoi systemy upravlіnnia elektroenerho-potokamy zalіzorudnykh shakht. Kremenchuk: Shcherbatykh, 143 s.
13. Sinchuk, O.M., Boiko, S.M., Sinchuk, I.O., Karamanyts, F.I., Koza-kevych, I.A., Baranovska, M.L., & Yalova, A.M. (2018). Aspects of the problem of applying dis-tributed energy in iron ore enterprises’ electricity supply systems. Warszawa, Poland: iScience Sp. z. o. o.
14. Grishko, A.P. (2007). Rudnichnye vodootlivnye, ventilyatornye i pnevmaticheskie ustanovki. Moskva, Rossiya: Gornaya kniga, 586 s.
15. Danil’chuk, G., Shevchuk, S., & Vasilenko, P. (1981). Avtomatizatsiya elektropotrebleniya vodootlivnykh ustanovok. Kiev, Ukraina: Tekhnika, 100 s.
16. Razumnyi, Yu., Rukhlov, A., & Rodna, K. (2010). Terms of the effective adjusting of the modes of mine main pumping electricity consumption. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (1), 76-78.
17. Tolmachov, S., & Ilchenko, O. (2017). Optymizatsiia rezhymiv roboty nasosnykh ustanovok holovnoho vodovidlyvu shakht za kryteriiem minimumu vartosti elektroenerhii. Visnyk Kryvorizkoho Natsionalnoho Universytetu, (44), 137-142.
18. Pivnyak, G.G., Beshta, A.S., Balahontsev, A.V., Beshta, D.A., & Hudoley, S.S. (2011). Energoeffektivnost’ kompleksa shakhtnogo vodootliva. Elektrotekhnicheskie Kkompleksy i Sistemy, 03(79), 394-396.
19. Nannes, Yu., Nedoluzhko, V., & Fedor, S. (2008). O trebovaniyakh po shakhtnomu vodootlivu novykh PTE i podgotavlivaemykh PB. Ugol’ Ukrainy, (5), 15-17.
20. Razumnyi, Yu., Rukhlov, A., & Rodna, K. (2010). Vyznachennia yemnosti vodozbirnyka holovnoho vodovidlyvu. Ugol’ Ukrainy, (4), 31-32.
21. Timuhin, S.A., Ivashchenko, E.P., Marchenko, A.Yu., Marchenko, M.Yu., Saltanov, S.N., Barinov, I.M., & Vikulov, E.A. (2015). O neobkhodimosti bolee polnogo ucheta maksimal’nykh pritokov vody v proektnykh resheniyakh kompleksov glavnogo vodootliva. Izvestiya UGGU, 4(40), 41-45. https://doi.org/10.7868/S0132344X15010041
22. Rozen, V.P., & Velikiy, S.S. (2018). Zahalna model pohoryzontnoho shakhtnoho vodovіdlyvu. Visnyk Kryvorizkoho Natsionalnoho Universytetu, (46), 56-60. https://doi.org/10.31721/2306-5451-2018-1-46-56-60
23. Antonov, E.I., & Galanin, A.N. (2011). Rezervy povysheniya ekspluatatsionnoy ekonomichnosti i nadezhnosti ustanovok glavnogo vodootliva shaht. Naukovі Pratsі DonNTU, 22(195), 3-12.
24. Savel’ev, I.V. (1982). Kurs obshchey fiziki. Tom 1. Mekhanika. Molekulyarnaya fizika. Moskva, Rossiya: Nauka, 517 s.
25. Kyrylenko, O.V., Lukianenko, L.M., & Honcharenko, I.S. (2017). Stokhastychnyi metod vyznachennia optymalnykh mists pidkliuchennia ta potuzhnosti dzherel rozoseredzhenoho heneruvannia. Tekhnichna Elektrodynamika, (1), 62-70. https://doi.org/10.15407/techned2017.01.062
26. Yehorshyn, O.O., & Maliarets, L.M. (2006). Matematychne prohramuvannia. Kharkiv, Ukraina: VD INZhEK, 438 s.
27. Novytskyi, I.V., & Us, S.A. (2011). Vypadkovi protsesy. Dnipro, Ukraina: Natsionalnyi hirnychyi universytet, 124 s.
28. Soroka, L.I., & Kalchuk, I.V. (2013). Vypadkovi protsesy. Lutsk, Ukraina: Skhidnoievropeiskyi natsionalnyi universytet imeni Lesi Ukrainky, 56 s.
29. Lamperti, Dzh. (1983). Sluchaynye protsessy. Obzor matematicheskoy teorii. Kiev, Ukraina: Vysshaya shkola, 227 s.
30. Gmurman, V.S. (2001). Teoriya veroyatnostey i matematicheskaya statistika. Moskva, Rossiya: Vysshaya shkola, 480 s.
31. Beridze, T.M., & Lokhman, N.V. (2017). Forming of administrative model of strategic development of enterprise is on principles of statistical monitoring. Sciences of Europe, 1(17), 7-11.
32. Okhrimenko, M.H., & Dziuban, I. Yu. (2005). Metody doslidzhennia operatsii. Kyiv, Ukraina: Politekhnika, 108 s.