Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Probabilistic assessment of slope stability at ore mining with steep layers in deep open pits

Olena Sdvyzhkova1, Serik Moldabayev2, Atac Bascetin3, Dmytro Babets1, Erzhan Kuldeyev2, Zhanat Sultanbekova2, Maksat Amankulov4, Bakhytzhan Issakov2

1Dnipro University of Technology, Dnipro, Ukraine

2Satbayev University, Almaty, Kazakhstan

3Istanbul University Cerrahpasa, Istanbul, Turkey

4Design company Antal, Almaty, Kazakhstan


Min. miner. depos. 2022, 16(4):11-18


https://doi.org/10.33271/mining16.04.011

Full text (PDF)


      ABSTRACT

      Purpose. A methodology development for predicting the geomechanical situation when mining an ore deposit with steep-dipping layers, taking into account the uncertainty in determining the rock properties, which is a consequence of the rock mass heterogeneity.

      Methods. The assessment of the open-pit wall stability is based on a combination of numerical simulation of the rock stress-strain state (SSS) and probabilistic analysis. The finite element method is used to determine the changes in the SSS that occur at various stages of mining operations due to design changes in the overall open-pit slope angle. The elastic-plastic model of the medium and the Mohr-Coulomb failure criterion are implemented in the codes of the 3D finite element analysis program RS3 (Rocscience). Stochastic simulation is used to assess random risks associated with natural object state variations.

      Findings. The distribution of maximum shear strains, which localizes the real or potential sliding surfaces in the open-pit wall at various stages of ore mining, has been identified. Based on the Shear Strength Reduction procedure, the open-pit wall Strength Reduction Factor (SRF) has been determined. The probabilities of open-pit wall stability loss, as well as the decrease in the strength reduction factor below the standard level at all stages of the ore body mining, have been revealed.

      Originality. For the first time, for real mining-geological conditions of a deep ore open pit, the dependence of the strength reduction factor on the overall wall slope angle, which changes during mining of each steep layer, has been determined. For each stage of mining operations, for the first time, the probability of a decrease in the open-pit wall stability below the standard level has been determined based on stochastic simulation.

      Practical implications. The ratio between the open-pit contour characteristic (overall slope angle) and the probabilistic safety factor is the basis for practical solutions to ensure the efficiency and safety of mining at various stages of friable and hard overburden excavation, ore extraction, as well as for the subsequent optimization of the open-pit design contours.

      Keywords: surface ore mining, slope stability, numerical simulation, probability, stochastic simulation


      REFERENCES

  1. Drizhenko, A.Yu. (2011). Etapnaya razrabotka porod vskryshi zhelezorudnykh kar’erov krutonaklonnymi vyemochnymi sloyami. Gornyi Zhurnal, (2), 25-28.
  2. Shustov, O.O., Haddad, J.S., Adamchuk, A.A., Rastsvietaiev, V.O., & Cherniaiev, O.V. (2019). Improving the construction of mechanized complexes for reloading points while developing deep open pits. Journal of Mining Science, (55), 946-953. https://doi.org/10.1134/S1062739119066332
  3. Moldabayev, S., Sultanbekova, Zh., Adamchuk, A., & Sarybayev, N. (2019). Method of optimizing cyclic and continuous technology complexes location during finalization of mining deep ore open pit mines. SGEM Proceedings of the 19th International Multidisciplinary Scientific GeoConference, (19), 407-414. https://doi.org/10.5593/sgem2019/1.3
  4. Sobko, B.Yu., Lozhnikov, O.V., Chebanov, M.O., & Kardash, V.A. (2021). Substantiating rational schedule to load trucks using draglines while mining a pit of Motronivskyi MPP. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 23-28. https://doi.org/10.33271/nvngu/2021-4/023
  5. Gavrishev, S.E., Kolonyuk, A.A., & Burmistrov, K.V. (2007). Osobennosti konstruirovaniya i raskonservatsii vremenno nerabochikh bortov. Gornyi Informatsionno-Analiticheskiy Byulleten, (2), 272-275.
  6. Anisimov, O., Symonenko, V., Cherniaiev, O., & Shustov, O. (2018). Formation of safety conditions for development of deposits by open mining. E3S Web of Conferences, (60), 00016. https://doi.org/10.1051/e3sconf/20186000016
  7. Moldabayev, S.K., Adamchuk, A.A., Toktarov, A.A., Aben, Y., & Shustov, O.O. (2020). Approbation of the technology of efficient application of excavator-automobile complexes in the deep open mines. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 30-38. https://doi.org/10.33271/nvngu/2020-4/030
  8. Rilnikova, M.V., Fedotenko, V.S., & Yesina, Ye.N. (2018). Primenenie avtomatizirovannykh sistem i tekhnologii pri otkrytoi razrabotke ugolnykh mestorozhdenii vysokimi vskryshnymi ustupami. Gornyi Zhurnal, (1), 32-36.
  9. Sinchkovskii, V.N., Vokin, V.N., & Tenyashnikov, V.A. (2006). Formirovanie rabochey zony kar’erov s uchetom raskonservatsii vremenno nerabochikh bortov. Gornyi Informatsionno-Analiticheskiy Byulleten, (3), 306-307.
  10. De Bruyn, I., Prado, D., Mylvaganam, J., & Walker, D. (2019). Geotechnical considerations for the stability of open pit excavations at mine closure: Some scenarios. Proceedings of the 13th International Conference on Mine Closure, 235-248. https://doi.org/10.36487/ACG_rep/1915_19_de_Bruyn
  11. Sirait, B., Salinita, S., Zulfahmi, & Pujianto, E. (2021). Assessing slope failure in coal mining using kinematic analysis. IOP Conference Series: Earth and Environmental Science, 882(1), 012060. https://doi.org/10.1088/1755-1315/882/1/012060
  12. Kuldeev, Е.I., Rysbekov, K.B., Donenbayevaa, N.S., & Milеtenko, N.A. (2021). Modern methods of geotechnic – effective way of providing industrial safety in mines. Eurasian Mining, 36(2), 18-21. https://doi.org/10.17580/em.2021.02.04
  13. Yarg, L.A., Fomenko, I.K., & Zhitinskaya, O.M. (2018). Evaluation of slope optimization factors for long-term operating open pit mines (in terms of the Stoilensky iron ore deposit of the Kursk Magnetic Anomaly). Gornyi Zhurnal, 76-81. https://doi.org/10.17580/gzh.2018.11.14
  14. Sirait, B., & Zulfahmi. (2021). Slope stability and bearing capacity analysis of disposal in open-pit coal mining. IOP Conference Series: Earth and Environmental Science, 882(1), 012059. https://doi.org/10.1088/1755-1315/882/1/012059
  15. Li, H., Zhang, Z., Yang, W. (2021). Stability analysis of slope based on limit equilibrium method and strength reduction method. Annales de Chimie: Science des Materiaux, 45(5), 379-384. https://doi.org/10.18280/acsm.450503
  16. Xu, J.S., & Yang, X.L. (2018). Three-dimensional stability analysis of slope in unsaturated soils considering strength nonlinearity under water drawdown. Engineering Geology, (237), 102-115. https://doi.org/10.1016/j.enggeo.2018.02.010
  17. Belghali, M., & Saada, Z. (2018). Seismic stability analysis of rock slopes by yield design theory using the generalized Hoek-Brown criterion. MATEC Web of Conferences, (149), 02026. https://doi.org/10.1051/matecconf/201814902026
  18. Luo, J., Zhu, W., Xiao, C., Zhang, Z., & Zhong, W. (2021). Detection of a weak structural stratum and stability analysis of the slope in an intensely weathered open-pit mine. IOP Conference Series: Earth and Environmental Science, 861(2), 022044. https://doi.org/10.18280/acsm.450503
  19. McQuillan, A., Canbulat, I., & Oh, J. (2020). Methods applied in Australian industry to evaluate coal mine slope stability. International Journal of Mining Science and Technology, 30(2), 151-155. https://doi.org/10.1016/j.ijmst.2019.11.001
  20. Wang, R., Wang, X., Yin, K., & Zhao, Y. (2013). Landslide stability analysis based on GeoStudio. Advanced Materials Research, (634-638), 3701-3704. https://doi.org/10.4028/www.scientific.net/AMR.634-638.3701
  21. Vanneschi, C., Eyre, M., Burda, J., Francioni, M., & Coggan, J.S. (2018). Investigation of landslide failure mechanisms adjacent to lignite mining operations in North Bohemia (Czech Republic) through a limit equilibrium/finite element modelling approach. Geomorphology, (320), 142-153. https://doi.org/10.1016/j.geomorph.2018.08.006
  22. McQuillan, A., Canbulat, I., Oh, J., Gale, S., & Yacoub, T. (2018). Geotechnical review of an open cut coal mine slope using 3D limit equilibrium modelling and new empirical run out prediction charts. Proceedings XIV Congreso Internacional de Energía y Recursos Minerales, 1734-53.
  23. Zhang, C., Amagu, C.A., Kodama, J., Fujii, Y., & Fukuda, D. (2021). Numerical analysis of impact of fault and weak rock formation on mining-induced deformation of rock slope. IOP Conference Series: Earth and Environmental Science, 861(3), 032087. https://doi.org/10.1088/1755-1315/861/3/032087
  24. Zhu, Y., Chu, W., Li, K., & Qian, J. (2021). Goaf and slope stability: A case study on the Yangla copper mine. IOP Conference Series: Earth and Environmental Science, 861(6), 062049. https://doi.org/10.1088/1755-1315/861/6/062049
  25. López-Vinielles, J., Fernández-Merodo, J.A., Ezquerro, P., Alvioli, M., & Herrera, G. (2021). Combining satellite insar, slope units and finite element modeling for stability analysis in mining waste disposal areas. Remote Sensing, 13(10), 2008. https://doi.org/10.3390/rs13102008
  26. Peterle, D.T., Hartwig, M.E., & De Lima, L.R. (2020). Slope stability assessment by using the finite element method: The case study of the Riacho dos Machados Gold Mine, Minas Gerais state, Southern Brazil. Proceedings of the 14th International Congress on Rock Mechanics and Rock Engineering: Rock Mechanics for Natural Resources and Infrastructure Development, 3621-3627.
  27. Bar, N., Kostadinovski, M., Tucker, M., McQuillan, A., & Yacoub, T. (2020). Pit slope failure evaluation in near real time using UAV photogrammetry and 3D limit equilibrium analysis. Australian Geomechanics, 55(2), 33-47. https://miar.ub.edu/issn/0818-9110
  28. Sdvizhkova, E.A., Kovrov, A.S., & Kiriiak, K.K. (2014) Geomechanical assessment of landslide slope stability by finite element method. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 86-92.
  29. Babets, D.V., Sdvyzhkova, O.O., Larionov, M.H., Tereshchuk, R.M. (2017). Estimation of rock mass stability based on probability approach and rating systems. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 58-64.
  30. Yang, G., Leung, A.K., Xu, N., Zhang, K., & Gao, K. (2019). Three-dimensional physical and numerical modelling of fracturing and deformation behavior of mining-induced rock slopes. Applied Sciences, 9(7), 1360. https://doi.org/10.3390/app9071360
  31. Pilecka, E., Stanisz, J., Kaczmarczyk, R., & Gruchot, A. (2021). The setting of strength parameters in stability analysis of open-pit slope using the random set method in the Bełchatów lignite mine, central Poland. Energies, 14(15), 46090. https://doi.org/10.3390/en14154609
  32. Abdulai, M., & Sharifzadeh, M. (2019). Uncertainty and reliability analysis of open pit rock slopes. A Critical Review of Methods of Analysis Geotechnical and Geological Engineering, 37(3), 1223-1247. https://doi.org/10.1007/s10706-018-0680-y
  33. Rafiei Renani, H., Martin, C.D., Varona, P., & Lorig, L. (2019). Stability analysis of slopes with spatially variable strength properties. Rock Mechanics and Rock Engineering, 52(10), 3791-3808. https://doi.org/10.1007/s00603-019-01828-2
  34. Pandit, B., Tiwari, G., Latha, G.M., & Sivakumar Babu, G.L (2018). Stability analysis of a large gold mine open-pit slope using advanced probabilistic method. Rock Mechanics and Rock Engineering, 51(7), 2153-2174. https://doi.org/10.1007/s00603-018-1465-6
  35. Pandit, B., Tiwari, G., Latha, G.M., & Babu, G.L.S. (2019). Probabilistic characterization of rock mass from limited laboratory tests and field data: Associated reliability analysis and its interpretation. Rock Mechanics and Rock Engineering, 52(9), 2985-3001.https://doi.org/10.1007/s00603-019-01780-1
  36. Grenon, M., Caudal, P., Amoushahi, S., Turmel, D., & Locat, J. (2017). Analysis of a large rock slope failure on the east wall of the LAB chrysotile mine in Canada: Back analysis, impact of water infilling and mining activity. Rock Mechanics and Rock Engineering, 50(2), 403-418. https://doi.org/10.1007/s00603-016-1116-8
  37. Gharehdaghi, M., Tehrani, H.S., & Fakher, A. (2020). Risk-based decision making method for selecting slope stabilization system in an abandoned open-pit mine. Open Construction and Building Technology Journal, (14), 198-217. https://doi.org/10.2174/1874836802014010198
  38. Azizi, M.A., Marwanza, I., Hartanti, N.A., & Anugrahadi, A. (2020). Risk analysis of limestone open pit mine slope stability in Rembang district, Indonesia. Proceedings of the 14th International Congress on Rock Mechanics and Rock Engineering: Rock Mechanics for Natural Resources and Infrastructure Development, 1-8.
  39. Kang, K., Fomenko, I.K., Wang, J., & Nikolskaya, O.V. (2020). Probabilistic assessment of rock slope stability in open pit mine chaarat using the generalized Hoek-Brown criterion. Journal of Mining Science, 56(5), 732-740.https://doi.org/10.1134/S1062739120057068
  40. Abdulai, M., & Sharifzadeh, M. (2021). Probability methods for stability design of open pit rock slopes: An overview. Geosciences, 11(8), 319.https://doi.org/10.3390/geosciences11080319
  41. Obregon, C., & Mitri, H. (2019). Probabilistic approach for open pit bench slope stability analysis – A mine case study. International Journal of Mining Science and Technology, 29(4), 629-640. https://doi.org/10.1016/j.ijmst.2019.06.017
  42. Dyson, A.P., & Tolooiyan, A. (2019). Prediction and classification for finite element slope stability analysis by random field comparison. Computers and Geotechnics, (109), 117-129. https://doi.org/10.1016/j.compgeo.2019.01.026
  43. Zevgolis, I.E., Deliveris, A.V., & Koukouzas, N.C. (2018). Probabilistic design optimization and simplified geotechnical risk analysis for large open pit excavations. Computers and Geotechnics, (103), 153-164.https://doi.org/10.1016/j.compgeo.2018.07.024
  44. Moldabayev, S.K., Sdvyzhkova, O.O., Babets, D.V., Kovrov, O.S., & Adil, T.K. (2020). Numerical simulation of the open pit stability based on probabilistic approach. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 29-34.https://doi.org/10.33271/nvngu/2021-6/029
  45. Pilecka, E., Stanisz, J., Kaczmarczyk, R., & Gruchot, A. (2021). The setting of strength parameters in stability analysis of open-pit slope using the random set method in the Bełchatów lignite mine, central Poland. Energies, 14(15), 46090.https://doi.org/10.3390/en14154609
  46. Sdvyzhkova, O., Babets, D., Moldabayev, S., Rysbekov, K., & Sarybayev, M. (2020). Mathematical modeling a stochastic variation of rock properties at an excavation design. International Multidisciplinary Scientific GeoConference (Surveying, Geology and Mining Ecology Management), (1-2), 165-172.
  47. Tymchenko, S.E., Tymchenko, E.M., Vlasov, S.F., Kovalenko, V.L., & Kotok, V.A. (2019). Foundation of a mathematical method for analysis of voice commands. ARPN Journal of Engineering and Applied Science, 14(10), 1908-1918.
  48. Tereshchuk, R.M., Khoziaikina, N.V., & Babets, D.V. (2018). Substantiation of rational roof-bolting parameters. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (1), 19-26. https://doi.org/10.29202/nvngu/2018-1/18
  49. Mоldаbаyеv, S.K., Аdаmchuk, А.А., Tоktаrоv, А.А., Аbеn, Y., & Shustоv, О.О. (2020). Аpprоbаtіon of the technology of efficient application of excavator-automobile complexes in the deep open mines. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 30-38.https://doi.org/10.33271/nvngu/2020-4/030
  50. Sdvizhkova, Ye.A., Babets, D.V., & Smirnov, A.V. (2014). Support loading of assembly chamber in terms of Western Donbas plough longwall. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 26-32.
  51. Sdvyzhkova, O., Golovko, Y., Klymenko, D. (2017). Effect of harmonic oscillations on a crack initiation in the rock mass. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 13-18.
  52. Sdvyzhkova, O.O., Shashenko, O.M., & Kovrov, O.S. (2010). Modelling of the rock slope stability at the controlled failure. Proceedings of the European Rock Mechanics Symposium, 581-584.
  53. Лицензия Creative Commons