Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Geomechanical substantiation of the parameters for the mining system with ore shrinkage in the combined mining of steep-dipping ore bodies

Tyiak Isabek1, Yerbol Orynbek1, Kamchybek Kozhogulov2, Zhadyra Sarkulova3, Lazzat Abdiyeva1, Svetlana Yefremova1

1Abylkas Saginov Karaganda Technical University, Karaganda, Kazakhstan

2I. Razzakov Kyrgyz State Technical University, Bishkek, Kyrgyzstan

3K. Zhubanov Aktobe Regional University, Aktobe, Kazakhstan


Min. miner. depos. 2022, 16(4):115-121


https://doi.org/10.33271/mining16.04.115

Full text (PDF)


      ABSTRACT

      Purpose. The research purpose is to substantiate a rational technology for mining steep-dipping ore bodies based on a complex of geomechanical studies in combined mining of deposits.

      Methods. Analysis of existing constructive methods for calculating the optimal mining system parameters when mining under-open-pit ore reserves in the zone of influence of surface mining operations, taking into account the natural stress-strain state of the rock mass. Numerical modeling is used to study the geomechanical processes occurring in the mass during the mining of under-open-pit reserves of steep-dipping ore bodies in order to substantiate the mining system with ore shrinkage. The geotechnical mapping of mine workings is conducted directly in the face to determine the mass rating.

      Findings. The calculation of the optimal parameters for the stope chamber, inter-chamber and inter-level pillars based on a complex of geomechanical studies has shown that the more intense horizontal stresses act in the bottom of the blocks and in the inter-block pillars, in which a large number of board gates have been driven.

      Originality. For the first time, using high-precision programs and given the nonuniform distribution of horizontal and vertical stresses acting in the mass for the Abyz Mine conditions, it has been revealed that when mining an individual block, the maximum horizontal stresses around the mined-out space reach 10-15 MPa; when mining a group of blocks – 20-25 MPa.

      Practical implications. The research results can be used in planning and mining with shrinkage of steep-dipping ore bodies during mining of under-open-pit reserves.

      Keywords: ore, mining system, stope space, inter-chamber pillars, numerical analysis, fracturing, rock mass


      REFERENCES

  1. Rakishev, B.R., Moldabayev, S.K., & Aben, Y. (2014). Minimizing the time of reaching the final depth in the pit of the first train when extracting the elongated steep-dipping deposits. Mine Planning and Equipment Selection, 209-216. https://doi.org/10.1007/978-3-319-02678-7_21
  2. Moldagozhina, M.K., Krupnik, L., Koptileuovich, Y.K., Mukhtar, E., & Roza, A. (2016). The system is “roof bolting-mountain”. International Journal of Applied Engineering Research, 11(21), 10454-10457.
  3. Razakova, M.G. (2017). Estimation of the surface displacement of ore mining quarry using Satellite Radar Interferometry. IOP Conference Series: Earth and Environmental Science, 57(1), 012023. https://doi.org/10.1088/1755-1315/57/1/012023
  4. Valiev, N., Berkovich, V., Propp, V., & Kokarev, K. (2018). Combined method of opencast and underground mining of valuable ore. E3S Web of Conferences, (56), 01023. https://doi.org/10.1051/e3sconf/20185601023
  5. Stupnik, N., Kalinichenko, V., Kolosov, V., Pismennyy, S., & Shepel, A. (2014). Modeling of stopes in soft ores during ore mining. Metallurgical and Mining Industry, 6(3), 32-37.
  6. Bakhtavar, E., Shahriar, K., & Oraee, K. (2009). Mining method selection and optimization of transition from open pit to underground in combined mining. Journal of Archives of Mining Sciences, 54(3), 481-493.
  7. Chen, J.H., Gu, D.S., & Li, J.X. (2003). Optimization principle of combined surface and underground mining and its applications. Journal of Central South University of Technology, 10(3), 222-225. https://doi.org/10.1007/s11771-003-0013-y
  8. Shnayder, M.F., & Voronenko, V.K. (1985). Sovmeshchenie podzemnykh i otkrytykh razrabotok rudnykh mestorozhdeniy. Moskva, Rossiya: Nedra, 67 s.
  9. Denwer, K.P. (2018). Alteration and mineral zonation at the Mt Lyell copper-gold deposit, Tasmania. Australian Journal of Earth Sciences, 65(6), 787-807. https://doi.org/10.1080/08120099.2018.1472663
  10. Ryl’nikova, M.V. (1998). Tekhnologiya kompleksnogo osvoeniya mestorozhdeniy kombinirovannym sposobom. Magnitogorsk, Rossiya: MGTU, 135 s.
  11. Shchelkanov, V.A., & Denisov, E.M. (1968). Vliyanie klimaticheskikh usloviy na effektivnost’ podzemnoy razrabotki prigranichnykh uchastkov. Gornyy Zhurnal, (9), 29-31.
  12. Shchelkanov, V.A. (1974). Kombinirovannaya razrabotka rudnykh mestorozhdeniy. Moskva, Rossiya: Nedra, 232 s.
  13. Permyakov, G.A., Ozerov, Yu.P., Aglyukov, H.I., & Roman’ko, A.D. (1987). Podzemnaya otrabotka prikonturnykh zapasov sideritov Bakal’skogo rudoupravleniya. Gornyy Zhurnal, (3), 22-23.
  14. Moreau, K., Laamanen, C.A., Bose, R., Shang, H., & Scott, J.A. (2020). Life cycle assessment to demonstrate how automation improves the environmental performance of an underground mining operation. Journal of Sustainable Mining, 19(3), 4. https://doi.org/10.46873/2300-3960.1016
  15. Chernykh, A.D., & Balashov, V.V. (1988). Kompleksnaya otkryto-podzemnaya razrabotka rudnykh mestorozhdeniy sistemami s obrusheniem. Razrabotka Mestorozhdeniy Tverdykh Poleznykh Iskopaemykh. Itogi Nauki i Tekhniki.
  16. Boerchers, M., Sinclair, A.J., Gibson, R.B., & Halden, N.M. (2018). Sustainability is finding the next mine: The complicated relationships among legacies, sustainability, and EA. Environmental Impact Assessment Review, (71), 84-93. https://doi.org/10.1016/j.eiar.2018.01.002
  17. Chernykh, A.D., & Bryukhovetskiy, O.S. (1988). Effektivnost’ otkryto-podzemnoy razrabotki mestorozhdeniy poleznykh iskopaemykh. Moskva, Rossiya: Cvetmetinformaciya, 253 s.
  18. Chernykh, A.D., Bryukhovetskiy, O.S., & Losinskiy, A.P. (1987). Dorabotka zapasov rud za konturami kar’erov s zakladkoy vyrabotannogo prostranstva. Razrabotka Mestorozhdeniy Tverdykh Poleznykh Iskopaemykh. Itogi Nauki i Tekhniki.
  19. Lyashenko, V. (2018). Safety improving of mine preparation works at the ore mines. Bezopasnost’ Truda v Promyshlennosti, (5), 53-59. https://doi.org/10.24000/0409-2961-2018-5-53-59
  20. Belova, M., Iakovleva, E., & Popov, A. (2019). Mining and environmental monitoring at open-pit mineral deposits. Journal of Ecological Engineering, 20(5), 172-178. https://doi.org/10.12911/22998993/105438
  21. Stupnik, M., Kolosov, V., Pysmennyi, S., & Kostiantyn, K. (2019). Selective mining of complex stuctured ore deposits by open stop systems. E3S Web of Conferences, (123), 01007. https://doi.org/10.1051/e3sconf/201912301007
  22. Shustov, O.O., Haddad, J.S., Adamchuk, A.A., Rastsvietaiev, V.O., & Cherniaiev, O.V. (2019). Improving the construction of mechanized complexes for reloading points while developing deep open pits. Journal of Mining Science, 55(6), 946-953. https://doi.org/10.1134/S1062739119066332
  23. Petlovanyi, M., Ruskykh, V., Zubko, S., & Medianyk, V. (2020). Dependence of the mined ores quality on the geological structure and properties of the hanging wall rocks. E3S Web of Conferences, (201), 01027. https://doi.org/10.1051/e3sconf/202020101027
  24. Stupnik, M., Kalinichenko, V., & Pismennyi, S. (2013). Pillars sizing at magnetite quartzites room-work. Annual Scientific-Technical Collection – Mining of Mineral Deposits, 11-15. https://doi.org/10.1201/b16354-3
  25. Heidbach, O., Rajabi, M., Reiter, K., & Ziegler, M. (2016). World stress map database release, (1). https://doi.org/10.5880/WSM.2016.001
  26. Imashev, A.Z., Sudarikov, A.E., Musin, A.A., Suimbayeva, A.M., & Asan, S.Y. (2021). Improving the quality of blasting indicators by studying the natural stress field and the impact of the blast force on the rock mass. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 4(448), 30-35. https://doi.org/10.32014/2021.2518-170X.78
  27. Imashev, A.Zh., Suimbayeva, A.M., Abdibaitov, Sh.A., Musin, A.A., & Asan, S.Yu. (2020). Justification of the optimal shape of the section of mine workings in accordance with the rating classification. Ugol, (6), 4-9. https://doi.org/10.18796/0041-5790-2020-6-4-9
  28. Adoko, A.C., Saadaari, F., Mireku-Gyimah, D., & Imashev, A. (2022). A feasibility study on the implementation of neural network classifiers for open stope design. Geotechnical and Geological Engineering, 40(2), 677-696. https://doi.org/10.1007/s10706-021-01915-8
  29. Hoek, E., & Karakas, A. (2008). Practical rock engineering. Environmental and Engineering Geoscience, 14(1), 55. https://doi.org/10.2113/gseegeosci.14.1.55
  30. Hoek, E., Carter, T.G., & Diederichs, M.S. (2013). Quantification of the geological strength index chart. ARMA, 13-672.
  31. Phase 2. Model program reference manual. (2001). Available at: https://www.rocscience.com/downloads/phase2/Phase2_ModelReference.pdf
  32. Shashenko, A., Gapieiev, S., & Solodyankin, A. (2009). Numerical simulation of the elastic-plastic state of rock mass around horizontal workings. Archives of Mining Sciences, 54(2), 341-348.
  33. Khazhyylai, C.V., Kosyreva, M.A., Eremenko, V.A., & Umarov, A.R. (2021). Stope stability assessment by the Mathews-Potvin method: A case-study of open stoping in salt rock mass under conditions of secondary stress field. IOP Conference Series: Earth and Environmental Science, 684(1), 012011. https://doi.org/10.1088/1755-1315/684/1/012011
  34. Malanchuk, Z., Moshynskyi, V., Malanchuk, V., Korniienko, Y., & Koziar, M. (2020). Results of research into the content of rare earth materials in man-made phosphogypsum deposits. Key Engineering Materials, (844), 77-87. https://doi.org/10.4028/www.scientific.net/KEM.844.77
  35. Pagé, P., Yang, P., Li, L., & Simon, R. (2021). A semi-empirical solution for estimating the elastic stresses around inclined mine stopes for the Mathews-Potvin stability analysis. Journal of the Southern African Institute of Mining and Metallurgy, 121(8), 405-414. https://doi.org/10.17159/2411-9717/690/2021
  36. Potvin, Y., & Hadjigeorgiou, J. (2008). Ground support strategies to control large deformations in mining excavations. SAIM & M, SANIRE & ISRM. 6th International Symposium on Ground Support in Mining and Civil Engineering Construction, 545-560.
  37. Issabek, T.K., Imashev, A.Zh., Bakhtybayev, N.B., & Zeitinova, Sh.B. (2019). To the problem of selecting vertical shafts location with combined geotechnology of developing deposits. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 5-12. https://doi.org/10.29202/nvngu/2019-2/3
  38. Isabek, T., Bahtybaeva, A., Imashev, A., Nemova, N., & Sudarikov, A. Dilatancy at rock fracture. (2014). Progressive Technologies of Coal, Coalbed Methane, and Ores Mining, 247-254. https://doi.org/10.1201/b17547-44
  39. Narodkhan, D., Isabek, T.K., Khodjaev, R.R., & Khuangan, N. (2020). Numerical simulation of the stability of the sides of coal mines under the influence of distributed loads. Sustainable Development of Mountain Territories, 12(3), 428-435. https://doi.org/10.21177/1998-4502-2020-12-3-428-435
  40. Sultanov, M.G., Mataev, A.K., Kaumetova, D.S., Abdrashev, R.M., Kuantay, A.S., & Orynbayev, B.M. (2020). Development of the choice of types of support parameters and technologies for their construction at the Voskhod field. Ugol, (10), 17-21. https://doi.org/10.18796/0041-5790-2020-10-17-21
  41. Matayev, A.K., Musin, A., Abdrashev, R.M., Kuantay, A.S., & Kuandykova, A.N. (2021). Substantiating the optimal type of mine working fastening based on mathematical modeling of the stress condition of underground structures. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (3), 57-63. https://doi.org/10.33271/nvngu/2021-3/057
  42. Arystan, I.D., Nemova, N.A., Baizbaev, M.B., Mataev, A.K. (2021). Efficiency of modified concrete in lining in underground structures. IOP Conference Series: Earth and Environmental Science, 773(1), 012063. https://doi.org/10.1088/1755-1315/773/1/012063
  43. Лицензия Creative Commons