Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Research into stress-strain state of the mass under open pit with a change in the open-pit bottom width

Askar Imashev1, Aigerim Suimbayeva1, Gaukhar Zhunusbekova1, Sholpan Zeitinova1, Aidar Kuttybayev2, Aibek Mussin1

1NJSC "Abylkas Saginov Karaganda Technical University", Karaganda, Kazakhstan

2Satbayev University, Almaty, Kazakhstan


Min. miner. depos. 2022, 16(3):61-66


https://doi.org/10.33271/mining16.03.061

Full text (PDF)


      ABSTRACT

      Purpose. Studying the stress-strain state of the rock mass under the open pit, taking into account the change in the open-pit bottom width in order to reveal the geomechanical state and determine the safe parameters of the rock bridge.

      Methods. The peculiarities of the stress-strain state formation in the transition zone have been studied according to the methodology using numerical research methods and taking into account the geological strength index (GSI). Using this index, it is possible to take into account rock fracturing, water cut, lithology and other strength indicators, due to which there is a correct transition from the rock sample strength to the mass strength.

      Findings. Based on the numerical modeling results, it has been determined that an increase in the open-pit bottom width leads to a decrease in the zone of tensile stresses concentration in the arch pillar of the stope block. This, in turn, has a positive effect on the rock bridge stability, that is, the probability of the rock bridge collapse does not increase with an increase in the width of the open-pit bottom.

      Originality. For the first time, the dependence has been obtained of the horizontal stresses σ3 distribution at the stages of the open-pit bottom expansion at the Akzhal Zinc-Lead Mine. This makes it possible to realistically predict changes in the geomechanical state of the rock bridge depending on the width of the open-pit bottom.

      Practical implications. When predicting the change in the stress-strain state in the transition zone and determining the rock bridge safe parameters, it is possible to reduce the probability of their destruction and make timely management decisions on safe conditions for mining the reserves.

      Keywords: stress-strain state, protecting pillar, geological strength index, numerical analysis


      REFERENCES

  1. Kaplunov, D.R., Kalmykov, V.N., & Ryl’nikova, M.V. (2003). Kombinirovannaya geotekhnologiya. Moslva, Rossiya: Ruda i metally, 560 s.
  2. Shvaher, N., Komisarenko, T., Chukharev, S., & Panova, S. (2019). Annual production enhancement at deep mining. E3S Web of Conferences, (123), 01043. https://doi.org/10.1051/e3sconf/201912301043
  3. Whittle, D. (2015). Determining the open pit to underground transition: A new method. Melbourne, Australia: University of Melbourne.
  4. McKinnon, S. (2017). Mine 469 Course Notes. Ontario, Canada: Queen’s University.
  5. Carter, T. (2014). Guidelines for use of the scaled span method for surface crown pillar stability assessment. Ontario, Canada: Ontario Ministry of Northern Development and Mines.
  6. Carter, T. (1992). A new approach to surface crown pillar design. Proceedings of the 16th Canadian Rock Mechanics Symposium.
  7. Bakhtavar, E. (2010). Determination of the optimum crown pillar thickness between open-pit and block caving. Proceedings of the 29th International Conference on Ground Control in Mining.
  8. Georgieva, T., Anastasov, D., & Gyrkov, I. (2016). Crown pillar behavior study using numerical modeling in Chelopech mine. Rock Mechanics and Rock Engineering: From the Past to the Future. https://doi.org/10.1201/9781315388502-78
  9. Heidarzadeh, S., Saeidi, A., & Rouleau, A. (2019). Evaluation of the effect of geometrical parameters on stope probability of failure in the open stoping method using numerical modelling. International Journal of Mining Science and Technology, 29(3), 399-408. https://doi.org/10.1016/j.ijmst.2018.05.011
  10. Kumar, H., Deb, D., & Chakravarty, D. (2016). Numerical analysis of sill and crown pillar stability for multilevel cut and fill stopes in different geomining conditions. Geotechnical and Geological Engineering, 34(2), 529-549. https://doi.org/10.1007/s10706-015-9964-7
  11. Kalenchuk, K., Falmagne, V., Gelover, A., Montiel, I., & Luzania, J. (2019). Risk evaluation, design, implementation, instrumentation, and verification for crown pillar extraction at Pinos Altos mine. Rock Mechanics and Rock Engineering, 52(12), 4997-5011. https://doi.org/10.1007/s00603-019-01801-z
  12. Ignatiev, S., Sudarikov, A., & Imashev, A. (2021). Determination of the stress-strain state of rock mass and zone of inelastic deformation around underground mine excavation using modern methods of numerical modelling. Journal of Sustainable Mining, 20(3), 220-227. https://doi.org/10.46873/2300-3960.1324
  13. Vallejos, J.A., & Díaz, L. (2020). A new criterion for numerical modelling of hangingwall overbreak in open stopes. Rock Mechanics and Rock Engineering, 1-23. https://doi.org/10.1007/s00603-020-02179-z
  14. Yardimci, A.G., Tutluoglu, L., & Karpuz, C. (2016). Crown pillar optimization for surface to underground mine transition in Erzincan/Bizmisen iron mine. Proceedings of the 50th US Rock Mechanics/Geomechanics Symposium.
  15. Betournay, M. (2001). A Canadian standard for hard rock mine shallow stope decommissioning. Ottawa, Canada: Canmet Natural Resources.
  16. Pravin, K. (2000). Obosnovanie tolshchiny i tekhnologii pogasheniya predohranitel’nogo celika pri kombinirovannoj razrabotke krutopadayushchih rudnyh mestorozhdenij: Na primere mestorozhdeniya Malandzhkhand, Indiya. Moskva, Rossiya: RUDN, 122 s.
  17. Nasibullin, N.N. (2005). Obosnovanie parametrov predohranitel’noy podushki pri otrabotke podkar’ernyh zapasov sistemami s obrusheniem. Moskva, Rossiya: MGU.
  18. Henry, E., & Dahnér-Lindqvist, C. (2000). Footwall stability at the LKAB’s Kiruna sublevel caving operation, Sweden. Proceedings of the 3rd International Conference and Exhibition on Mass Mining.
  19. Pysmennyi, S., Fedko, M., Shvaher, N., & Chukharev, S. (2020). Mining of rich iron ore deposits of complex structure under the conditions of rock pressure development. E3S Web of Conferences, (201), 01022. https://doi.org/10.1051/e3sconf/202020101022
  20. Singh, U.K., Stephansson, O.J., & Herdocia, A. (1993). Simulation of progressive failure in hangingwall and footwall for mining with sub-level caving. Transactions of the Institution of Mining and Metallurgy, (102), 188-194.
  21. Baryshnikov, V.D., & Gahova, L.N. (2010). K voprosu geomekhanicheskogo soprovozhdeniya otrabotki podkar’ernyh zapasov rudnika “Aykhal”. Rudnik Budushchego, (3), 1-8.
  22. Mamatova, G.T., Alibaev, A.P., & Takeeva, A.R. (2012). Issledovanie napryazhenno-deformirovannogo sostoyaniya pribortovogo massiva i dna kar’era pri provedenii v bortu kar’era gorizontal’nykh gornykh vyrabotok. Izvestiya OshTU, (1), 66-70.
  23. Baryshnikov, V.D., & Gakhova, L.N. (2016). K voprosu otsenki formirovaniya napryazhenno-deformirovannogo sostoyaniya podkar’ernoy potolochiny chislennymi metodami. Nedropol’zovanie. Gornoe Delo. Napravleniya i Tekhnologii Poiska, Razvedki i Razrabotki Mestorozhdeniy Poleznykh Iskopaemykh. Geoekologiya, (3), 39-44.
  24. Baryshnikov, V.D., Baryshnikov, D.V., & Gakhova, L.N. (2018). Assessment and control of stress of waterworks in service. Conference Proceedings of 18th International Multidisciplinary Scientific GeoConference, 87-93.
  25. Tankov, M.S., & Shelkovyy, I.S. (2012). Opyt otrabotki zapasov rudy v bortah i dne kar’erov pri perekhode s otkrytogo sposoba razrabotki na podzemnyj. Zapiski Gornogo Instituta, (198), 37.
  26. Singh, B., & Goe, R.K. (1999). Rock mass classification. A practical approach in civil engineering. London, United Kingdom: Elsevier Science Ltd, 267 p.
  27. Hoek, E., Carter, T., & Diederichs, M. (2013). Quantification of the geological strength index chart. Proceedings of the 47th US Rock Mechanics, 1-8.
  28. Hoek, E., Carranza-Torres, C., & Corkum, B. (2002). Hoek-Brown failure criterion-2002 edition. Proceedings of the Fifth North American Rock Mechanics Symposium, (1), 267-273.
  29. Imashev, A.Zh., Suimbayeva, A.M., Abdibaitov, Sh.A., Musin A.A., & Asan, S.Yu. (2020). Justification of the optimal cross-sectional shape of the mine workings in accordance with the rating classification. Ugol’ – Russian Coal Journal, (6), 4-9. https://doi.org/10.18796/0041-5790-2020-6-4-9
  30. Imashev, A., Sudarikov, A., Musin, A., Suimbayeva, A., & Asan, S. (2021). Improving the quality of blasting indicators by studying the natural stress field and the impact of the blast force on the rock mass. News of the National Academy of Sciences of the Republic of Kazakhstan. Series of Geology and Technical Sciences, 4(448), 30-35. https://doi.org/10.32014/2021.2518-170X.78
  31. Ulusay, R. (2015). The ISRM suggested methods for rock characterization, testing and monitoring: 2007-2014. Berlin, Germany: Springer, 220 p. https://doi.org/10.1007/978-3-319-07713-0
  32. Imashev, A.Zh., Suimbaeva, A.M., Musin, A.A., & Asan, S.Yu. (2020). Otsenka vliyaniya vnutrennego otvala na napryazhenno-deformirovannoe sostoyanie podkar’ernogo massiva. Gornyj Zhurnal Kazahstana, (7), 21-26.
  33. Grigor’ev, A.M. (2008). Geomekhanicheskoe obosnovanie podzemnoy razrabotki zhelezorudnyh mestorozhdeniy KMA pod obvodnennoy tolshchey porod. Moskva, Rossiya: Rossiyskiy gosudarstvennyy geologorazvedochnyy universitet.
  34. Лицензия Creative Commons