Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Substantiating the optimization solutions for the mine working fastening system interaction with the enclosing rock mass

Hennadii Symanovych1, Ildar Salieiev2, Maksym Shyshov2, Mykola Odnovol1

1Dnipro University of Technology, Dnipro, Ukraine

2LLC “DTEK Energy”, Kyiv, Ukraine


Min. miner. depos. 2022, 16(3):54-60


https://doi.org/10.33271/mining16.03.054

Full text (PDF)


      ABSTRACT

      Purpose. Determination of the rational interaction modes between the fastening system and the extraction working enclosing mass in the zone of stope operations influence.

      Methods. An algorithm for searching for optimal solutions for the interaction modes between the fastening system and the coal-bearing mass has been substantiated. The deformation-strength characteristics of the fastening system elements have been agreed. The design parameters of the support elements have been optimized according to the criterion of their equal strength. According to the optimal parameters, a methodology for calculating the function that describes the rational deformation-strength characteristic of the fastening system, depending on the mining-geological conditions, has been developed and substantiated.

      Findings. Computational experiments have been conducted to determine the rock mass deformation-strength characteristic. Based on the normative documents, the sizes of the natural equilibrium arch have been calculated. The adequacy of methodical principles for minimizing the load on the fastening system has been proved. The patterns for the influence of geomechanical factors on the choice of optimal parameters of the fastening system deformation-strength characteristics have been determined. A methodology for calculating the rational parameters of the fastening system and its constituent elements has been obtained.

      Originality. Combined studies of minimizing the load on the fastening system have been conducted. The patterns for the influence of geomechanical factors on the choice of load-bearing capacity and the yielding property value of the fastening system have been determined. Regression equations have been obtained for calculating the fastening system optimal parameters with a geomechanical index of working conditions. This enables implementation of a unified strategy for resource-saving improvement in fastening systems.

      Practical implications. A methodology has been developed for obtaining the weakening mass deformation-strength characteristic, depending on the depth of mine working location, the texture of the rocks in the coal-overlaying formation and its strength properties. The applicability of the methodology for the implementation of a unified strategy of resource-saving improvement of the mine working fastening systems for the Western Donbas mines has been proved.

      Keywords: rock mass, extraction working, optimization, methodology, fastening system


      REFERENCES

  1. Bondarenko, V., Symanovych, H., Kicki, J., Barabash, M., & Salieiev, I. (2019). The influence of rigidity of the collapsed roof rocks in the mined-out space on the state of the preparatory mine workings. Mining of Mineral Deposits, 13(2), 27-33. https://doi.org/10.33271/mining13.02.027
  2. Bazaluk, O., Ashcheulova, O., Mamaikin, O., Khorolskyi, A., Lozynskyi, V., & Saik, P. (2022). Innovative activities in the sphere of mining process management. Frontiers in Environmental Science, (10), 878977. https://doi.org/10.3389/fenvs.2022.878977
  3. Kopacz, M., Kulpa, J., Galica, D., Dyczko, A., & Jarosz, J. (2019). Economic valuation of coal deposits – The value of geological information in the resource recognition process. Resources Policy, (63), 101450. https://doi.org/10.1016/j.resourpol.2019.101450
  4. Ріwnіаk, G.G., Воndаrеnkо, V.І., Sаllі, V.І., Pаvlеnkо, І.І., & Dусhkоvskіу, R.О. (2007). Lіmіts tо еcоnоmіс vіаbіlіtу оf еxtrасtіоn оf thіn соаl sеаms іn Ukrаіnе. Тесhnісаl, Tесhnоlоgісаl аnd Есоnоmіс Аsресts оf Thіn-Sеаms Соаl Міnіng, 129-132.
  5. Petlovanyi, M., Medianyk, V., Sai, K., Malashkevych, D., & Popovych, V. (2020). Geomechanical substantiation of the parameters for coal auger mining in the protecting pillars of mine workings during thin seams development. ARPN Journal of Engineering and Applied Sciences, 16(15), 1572-1582.
  6. Ricketts, B. (2019). Eeurocoal. Changing the face of coal: an outline strategic research agenda for future coal-related RTD in the European Union. Available at: https://ec.europa.eu/energy/sites/ener/files/documents/12.1_euracoal.pdf
  7. Bondarenko, V., Kovalevska, I., Cawood, F., Husiev, O., Snihur, V., & Jimu, D. (2021). Development and testing of an algorithm for calculating the load on support of mine workings. Mining of Mineral Deposits, 15(1), 1-10. https://doi.org/10.33271/mining15.01.001
  8. Matayev, A.K., Musin, A., Abdrashev, R.M., Kuantay, A.S., & Kuandykova, A.N. (2021). Substantiating the optimal type of mine working fastening based on mathematical modeling of the stress condition of underground structures. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (3), 57-63. https://doi.org/10.33271/nvngu/2021-3/057
  9. Abdellah, W., Abdelhaffez, G., & Saleem, H. (2020). Stability assessment of underground openings using different rock support systems. Rudarsko Geolosko Naftni Zbornik, 35(1), 49-63. https://doi.org/10.17794/rgn.2020.1.5
  10. Bondarenko, V., Kovalevska, I., Symanovych, H., Barabash, M., & Snihur, V. (2018). Assessment of parting rock weak zones under the joint and downward mining of coal seams. E3S Web of Conferences, (66), 03001. https://doi.org/10.1051/e3sconf/20186603001
  11. Pivnyak, G.G., Pilov, P.I., Bondarenko, V.I., Surgai, N.S., & Tulub, S.B. (2005). Development of coal industry: The part of the power strategy in the Ukraine. Gornyi Zhurnal, (5), 14-17.
  12. Dubiński, J., Prusek, S., Turek, M., & Wachowicz, J. (2020). Hard Coal Production Competitiveness in Poland. Journal of Mining Science, (56), 322-330. https://doi.org/10.1134/S1062739120026806
  13. Dyczko, A., Kamiński, P., Jarosz, J., Rak, Z., Jasiulek, D., & Sinka, T. (2021). Monitoring of roof bolting as an element of the project of the introduction of roof bolting in polish coal mines-case study. Energies, 15(1), 95. https://doi.org/10.3390/en15010095
  14. Lozynskyi, V., Medianyk, V., Saik, P., Rysbekov, K., & Demydov, M. (2020). Multivariance solutions for designing new levels of coal mines. Rudarsko-Geološko-Naftni Zbornik, 35(2), 23-31. https://doi.org/10.17794/rgn.2020.2.3
  15. Sotskov, V., & Saleev, I. (2013). Investigation of the rock massif stress strain state in conditions of the drainage drift overworking. Annual Scientific-Technical Collection – Mining of Mineral Deposits, 197-201. https://doi.org/10.1201/b16354-35
  16. Matayev, A., Abdiev, A., Kydrashov, A., Musin, A., Khvatina, N., & Kaumetova, D. (2021). Research into technology of fastening the mine workings in the conditions of unstable masses. Mining of Mineral Deposits, 15(3), 78-86. https://doi.org/10.33271/mining15.03.078
  17. Skipochka, S. (2019). Conceptual basis of mining intensification by the geomechanical factor. E3S Web of Conferences, (109), 00089. https://doi.org/10.1051/e3sconf/201910900089
  18. Małkowski, P., Niedbalski, Z., Majcherczyk, T., & Bednarek, Ł. (2020). Underground monitoring as the best way of roadways support design validation in a long time period. Mining of Mineral Deposits, 14(3), 1-14. https://doi.org/10.33271/mining14.03.001
  19. Bondarenko, V.I., Griadushchiy, Y.B., Dychkovskiy, R.O., Korz, P.P., & Koval, O.I. (2007). Advanced experience and direction of mining of thin coal seams in Ukraine. Technical, Technological and Economic Aspects of Thin-Seams Coal Mining, 2-7. https://doi.org/10.1201/noe0415436700.ch1
  20. Kicki, J., & Dyczko, A. (2010). The concept of automation and monitoring of the production process in an underground mine. New Techniques and Technologies in Mining, 245-253. https://doi.org/10.1201/b11329-41
  21. Majkherchik, T., Gajko, G.I., & Malkowski, P. (2002). Deformation process around a heading investigation when front of longwall face advancing. Ugol, (11), 27-29.
  22. Bondarenko, V., Kovalevska, I. Symanovych, G., Sotskov, V., & Barabash, M. (2018). Geomechanics of interference between the operation modes of mine working support elements at their loading. Mining Science, (25), 219-235. https://doi.org/10.5277/msc182515
  23. Bondarenko, V., Symanovych, G., & Koval, O. (2012). The mechanism of over-coal thin-layered massif deformation of weak rocks in a longwall. Geomechanical Processes During Underground Mining, 41-44. https://doi.org/10.1201/b13157-8
  24. Sultanov, M.G., Mataev, A.K., Kaumetova, D.S., Abdrashev, R.M., Kuantay, A.S., & Orynbayev, B.M. (2020). Development of the choice of types of support parameters and technologies for their construction at the Voskhod field. Ugol, (10), 17-21. https://doi.org/10.18796/0041-5790-2020-10-17-21
  25. Ваbеts, D.V. (2017). Еstіmаtіоn оf rосk mаss stаbіlіtу bаsеd оn рrоbаbіlіtу аррrоасh аnd rаtіng sуstеms. Nаukoоуі Vіsnуk NHU, (2), 58-64.
  26. Shashenko, A., Gapieiev, S., & Solodyankin, A. (2009). Numerical simulation of the elastic-plastic state of rock mass around horizontal workings. Archives of Mining Sciences, 54(2), 341-348.
  27. Arystan, I.D., Nemova, N.A., Baizbaev, M.B., & Mataev, A.K. (2021). Efficiency of underground structures. IOP Conference Series: Earth modified concrete in lining in and Environmental Science, 773(1), 012063. https://doi.org/10.1088/1755-1315/773/1/012063
  28. Bondarenko, V., Kovalevska, I., Symanovych, Н., Barabash, M., Chervatiuk, V., Husiev, O., & Snihur, V (2020). Combined roof-bolting systems of mine workings. London, United Kingdom: CRC Press, Taylor & Francis Group, 254 р. https://doi.org/10.1201/9781003081432
  29. Abdullayev, S.S., Bondar, I.S., Bakyt, G.B., Ashirbayev, G.K., Budiukin, A.M., & Baubekov, Y.Y. (2021). Interaction of frame structures with rolling stock. Geology and Technical Sciences, 1(445), 22-28.https://doi.org/10.32014/2021.2518-170X.3
  30. Mikhlin, Y.V. (1997). An application of the ince algebraization to the stability of non-linear normal vibration modes. International Journal of Non-Linear Mechanics, 32(2), 393-409.
  31. Pivnyak, G., Bondarenko, V., Kovalevs’ka, I., & Illiashov, M. (2012). Geomechanical processes during underground mining. London, United Kingdom: CRC Press, Taylor & Francis Group, 300 p. https://doi.org/10.1201/b13157
  32. Tsvetkov, A.B., Pavlova, L.D., & Fryanov, V.N. (2016). Construction of the approximant of complete diagram for rock deformation. IOP Conference Series: Earth and Environmental Science, 45(1), 012009. https://doi.org/10.1088/1755-1315/45/1/012009
  33. Wu, H., Jia, Q., Wang, W., Zhang, N., & Zhao, Y. (2021). Experimental test on nonuniform deformation in the tilted strata of a deep coal mine. Sustainability, 13(23), 13280. https://doi.org/10.3390/su132313280
  34. Tao, Z., Shu, Y., Yang, X., Peng, Y., Chen, Q., & Zhang, H. (2020). Physical model test study on shear strength characteristics of slope sliding surface in Nanfen open-pit mine. International Journal of Mining Science and Technology, 30(3), 421-429. https://doi.org/10.1016/j.ijmst.2020.05.006
  35. Bekbergenov, D., Jangulova, G., Kassymkanova, K.K., & Bektur, B. (2020). Mine technical system with repeated geotechnology within new frames of sustainable development of underground mining of caved deposits of the Zhezkazgan field. Geodesy and Cartography, 46(4), 182-187. https://doi.org/10.3846/gac.2020.10571
  36. Kuanyshbekovna, M.M., Krupnik, L., Koptileuovich, Y.K., Mukhtar, E., & Roza, A. (2016). The system is “roof bolting-mountain”. International Journal of Applied Engineering Research, 11(21), 10454-10457.
  37. Bondarenko, V.I., Kharin, Ye.N., Antoshchenko, N.I., & Gasyuk, R.L. (2013). Basic scientific positions of forecast of the dynamics of methane release when mining the gas bearing coal seams. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 24-30.
  38. Xu, G., Luxbacher, K. D., Ragab, S., Xu, J., & Ding, X. (2017). Computational fluid dynamics applied to mining engineering: a review. International Journal of Mining, Reclamation and Environment, 31(4), 251-275. https://doi.org/10.1080/17480930.2016.1138570
  39. Xue, X., Wang, S., Gui, B., & Hou, Z. (2016). A computational experiment-based evaluation method for context-aware services in complicated environment. Information Sciences, (373), 269-286. https://doi.org/10.1016/j.ins.2016.09.003
  40. Pivnyak, G., Bondarenko, V., & Kovalevska, I. (2015). New developments in mining engineering 2015: Theoretical and practical solutions of mineral resources mining. London, United Kingdom: CRC Press, Taylor & Francis Group, 607 p. https://doi.org/10.1201/b19901
  41. Barabash, M., Salieiev, I., & Symanovych, H. (2021). Technical and technological aspects of the coal mine closure based on the geomechanical component assessment. Mining of Mineral Deposits, 15(3), 7-15. https://doi.org/10.33271/mining15.03.007
  42. Zaslavskiy, Yu.Z. (1966). Issledovanie proyavleniy gornogo davleniya v kapital’nykh vyrabotkakh glubokikh shakht Donbassa. Moskva, Rossiya: Nedra, 180 s.
  43. Vinogradov, V.V. (1989). Geomekhanika upravleniya sostoyaniem massiva vblizi gornykh vyrabotok. Kyiv, Ukraina Naukova dumka, 192 s.
  44. KD 12.01.01.201-98. (1998). Raspolozhenie, okhrana i podderzhanie gornykh vyrabotok pri otrabotke ugol'nykh plastov na shakhtakh. Kyiv, Ukraіna: Ukraіnskyi naukovo-doslidnyi marksheiderskyi instytut, 49 s.
  45. Rukovodstvo po podderzhaniyu gornykh vyrabotok na shakhtakh Zapadnogo Donbassa. (1992). Sankt-Peterburg, Rossiya: Vsesoyuznyy nauchno-issledovatel’skiy marksheyderskiy institut, 51 s.
  46. Instruktsiya po podderzhaniyu gornykh vyrabotok na shakhtakh Zapadnogo Donbassa. (1994). Sankt-Peterburg – Pavlograd: VNIMI – ZDNPTS “Geomekhanika”, 95 s.
  47. SNiP II-94-80. (1982). Podzemnye gornye vyrabotki. Normy proektirovaniya. Moskva, Rossiya: Stroyizdat, 272 s.
  48. Лицензия Creative Commons