Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Determining the rational operating parameters for granite crushing to obtain cubiform crushed stone

Denys Bozhyk1, Mykola Sokur2, Volodymyr Biletskyi3

1PJSC Suha Balka, Kryvyi Rih, Ukraine

2Kremenchuk Mykhailo Ostrohradskyi National University, Kremenchuk, Ukraine

3National Technical University “Kharkiv Polytechnic Institute”, Kharkiv, Ukraine


Min. miner. depos. 2022, 16(3):18-24


https://doi.org/10.33271/mining16.03.018

Full text (PDF)


      ABSTRACT

      Purpose. Determining the rational operating parameters for granite crushing under impact in the field of centrifugal forces to obtain cubiform crushed stone. In order to achieve the purpose set, the task is to determine the operating parameters for obtaining the main grain-size classes: -50.0 + 20.0; -40.0 + 20.0; -20.0 + 10.0; -10.0 + 5.0 and 5.0 mm.

      Methods. The crushing process of granite crushed stone is studied in the conditions of the Kolomoievskyi Granite Quarry, Dnipropetrovsk region. Granite crushed stone with an initial grain-size of 100.0-0.0 mm and strength grade of M1400 is subjected to crushing. The accelerating rotor rotation frequency is the design value n = 200-1200 min-1. Fine crushing of granite is performed in a centrifugal-impact crusher by a free impact in the field of centrifugal forces.

      Findings. The optimal speed modes of centrifugal crusher operation, which provide the production of high-quality crushed stone with a maximum content of 90-95% cubiform fractions, have been substantiated.

      Originality. The yield dependences have been obtained of the grain-size classes: -50.0 + 20.0; -40.0 + 20.0; -20.0 + 10.0; -10.0 + 5.0 and 5.0 mm depending on the speed mode of the centrifugal crusher operation.

      Practical implications. The operating parameters for obtaining the main grain-size classes of cubiform crushed stone from granite have been determined: -50.0 + 20.0; -40.0 + 20.0; -20.0 + 10.0; -10.0 + 5.0 and 5.0 mm. In particular, it has been determined that for the production of cubiform crushed stone with -50.0 + 20.0 mm grain-size, the rotor rotation reasonable speed is 400-500 min-1 (the speed of material departure from the accelerating rotor is 45-50 m/sec); for cubiform crushed stone of -40.0 + 20.0 mm grain-size, the speed mode is 200 min-1 (25 m/sec); for cubiform crushed stone of -20.0 + 10.0 mm grain-size – 600-650 min-1 (70-80 m/sec), respectively. The maximum content of cubiform fractions in the -20.0 + 10.0 mm grain-size class is 95%, which is achieved at a rotor speed of 650-700 min-1 (departure speed is 75-80 m/sec). The maximum content of cubiform fractions in the -10.0 mm grain-size class is 94-95%, which is achieved at the accelerating rotor speed within 700-800 min-1 (departure speed is 70-80 m/sec). The obtained data make it possible to practically choose a rational speed mode of the centri-fugal-impact crusher operation to obtain the maximum yield of cubiform crushed stone.

      Keywords: granite, crushing, cubiform crushed stone, centrifugal-impact crusher, operating parameters


      REFERENCES

  1. Hurskyi, D.S., Yesypchuk, K.Yu., & Kalinin, V.I. (2006). Nemetalichni korysni kopalyny. Metalichni i Nemetalichni Korysni Kopalyny. Tom 2. Kyiv, Ukraina: Tsentr Yevropy, 551 s.
  2. Mineralni resursy Ukrainy. (2021). Kyiv, Ukraina: Derzhavne naukovo-vyrobnyche pidpryiemstvo “Derzhavnyi informatsiinyi heolohichnyi fond Ukrainy”, 270 s.
  3. Analiz rynku shchebeniu Ukrainy. (2021). Retrieved from:https://pro-consulting.ua/ua/issledovanie-rynka/analiz-rynka-shebnya-ukrainy-2021-god
  4. Venik, V.N., Nedavniy, O.I., Osipov, S.P., & Adrenkin, I.G. (2013). Matematicheskaya model’ otsenki geometricheskikh parametrov shchebnya dlya asfal’tobetona. Vestnik Tomskogo Gosudarstvennogo Arhitekturno-Stroitel’nogo Universiteta, (1), 139-148.
  5. Guo, W. (1988). Some material parameters on numerical statistical continuum mechanics of concrete. TU Delft Report 25-88-38. Delft, The Netherlands: Delft University of Technology.
  6. Erdogan, S.T., Quiroga, P.N., Fowler, D.W., Saleh, H.A., Livingston, R.A., Garboczi, E.J., & Satterfield, S.G. (2006). Three-dimensional shape analysis of coarse aggregates: New techniques for and preliminary results on several different coarse aggregates and reference rocks. Cement and Concrete Research, 36(9), 1619-1627.https://doi.org/10.1016/j.cemconres.2006.04.003
  7. He, H., Stroeven, P., Pirard, E., & Courard, L. (2015). On the shape simulation of aggregate and cement particles in a DEM system. Advances in Materials Science and Engineering, (2015), 692768. https://doi.org/10.1155/2015/692768
  8. Heleta, O. (2008). Ukrainskyi rynok shchebeniu z pryrodnoho kaminnia. Koshtovne ta Dekoratyvne Kaminnia, 3(53), 3-11.https://doi.org/10.1155/2015/692768
  9. Romanovich, A.A. (2014). Performance review and principal directions for development of a grinding equipment in cement factory. ARPN Journal of Engineering and Applied Sciences, 9(11), 2367-2370.
  10. Sevost’yanov, V.V., Targonskyy, I.I., Romanovich, A.A., & Goncharov, A.A. (1993). Energy saving milling aggregates with internal recycling of the milled materials. Glass and Ceramics, 50(4), 180-184.https://doi.org/10.1007/BF00679416
  11. Sokur, M.I., Biletskyi, V.S., Hnieushev, V.O., & Bozhyk, D.P. (2018). Teoretychni i praktychni aspekty vyrobnytstva vysokoiakisnoho kubovydnoho shchebeniu. Visnyk Natsionalnoho Universytetu Vodnoho Hospodarstva ta Pryrodokorystuvannia. Seriia “Tekhnichni Nauky”, 3(79), 88-96.
  12. Akobirova, L., Gafurov, K., Jumayev, J., Kuldasheva, F., & Xikmatov, D. (2021). Experimental study of crushing process of the crushed stone. E3S Web of Conferences, (264), 04093. https://doi.org/10.1051/e3sconf/202126404093
  13. Romanovich, M.A., Romanovich, A.A., Chekhovskoy, E.I., & Amini, E. (2021). Unit with a device for directional feeding of rocks with a shale structure. Journal of Physics: Conference Series, 1926(1), 012027.https://doi.org/10.1088/1742-6596/1926/1/012027
  14. Romanovich, A.A., Romanovich, M.A., & Chekhovskoy, E.I. (2018). Calculation of the force required to create a directional movement of shale materials in a press-roll unit. Bulletin of BSTU named after V.G. Shukhov, (8), 131-135.https://doi.org/10.1088/1755-1315/194/3/032025
  15. Sokur, N., Biletskyy, V., Sokur, L., Bozyk, D., Sokur, I. (2016). Investigation of theprocess of crushing solid materials in the centrifugal disintegrators. Eastern-European Journal of Enterprise Technologies, 3(7(81)), 34-40.https://doi.org/10.15587/1729-4061.2016.71983
  16. Shuloyakov, A.D. (2017). On the production of high-quality cuboid crushed stone. Construction Materials, (7), 56-59.https://doi.org/10.31659/0585-430X-2017-750-7-56-59
  17. Bozhyk, D.P., Sokur, M.I., Biletskyi, V.S., Yehurnov, O.I., Vorobiov, O.M., & Smyrnov, V.O. (2017). Pidhotovka korysnykh kopalyn do zbahachennia. Kremenchuk, Ukraina: PP Shcherbatykh O.V.
  18. Monov, V., Sokolov, B., & Stoenchev, S. (2012). Grinding in ball mills: Modeling and process control. Cybernetics and Information Technologies, 12(2), 51-68.https://doi.org/10.2478/cait-2012-0012Th
  19. Leonovych, S., & Poleiko, N. (2018). Constructional indicators of concrete on cubical crushed stone. Ways to Improve Construction Efficiency, (35), 38-44.https://doi.org/10.32347/2707-501x.2018.35.38-44
  20. Starchukov, D.S. (2011). Betony uskorennogo tverdeniya s dobavkami tverdykh veshchestv neorganicheskoy prirody. Beton i Zhelezobeton, (14), 22-24.
  21. Shadrunova, I.V., Gorlova, O.E., Kolodezhnaya, E.V., & Kutlubaev, I.M. (2015). Metallurgical slag disintegration in centrifugal impact crushing machines. Journal of Mining Science, 51(2), 363-368. https://doi.org/10.1134/s1062739115020210
  22. Лицензия Creative Commons