Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

An alternative method of methane production from deposits of subaquatic gas hydrates

Vasyl Klymenko1, Serhii Ovetskyi2, Viktor Martynenko3, Oleg Vytyaz2, Andrii Uhrynovskyi2

1Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine

2Ivano-Frankivsk National Technical University of Oil and Gas, Ivano-Frankivsk, Ukraine

3Reseach Production Company “Radics LLC”, Kropyvnytskyi, Ukraine


Min. miner. depos. 2022, 16(3):11-17


https://doi.org/10.33271/mining16.03.011

Full text (PDF)


      ABSTRACT

      Purpose. Determination of the potential efficiency of the alternative method of methane production from subaquatic gas hydrate deposits using the emissions of underwater mud volcanoes considering geological and thermodynamic conditions typical for the Black Sea.

      Methods. Computer modeling of the processes considering changing of the thermodynamic parameters of the supplying fluid within the pipeline and hydrate deposits was carried out on the basis of the Aspen Hysys program, using the Ng and Robinson model to calculate the energy potential of the fluid.

      Findings. An algorithm for calculating the distance to which a flow of the emissions mud volcano can be delivered with a temperature sufficient to remove sea bed hydrates from thermodynamic equilibrium and release methane has been developed. The schematic technological solution of an alternative method of methane production from gas hydrate deposits were presented by using the energy of emissions of mud volcano (fluid). The collection device for emissions of mud volcano and gas hydrate sea bed deposits were also been used within the model. The calculations have been done using Aspen Hysys computer program.

      Originality. The potential efficiency of the alternative method of methane production from gas hydrated sea bed deposits using thermal energy from emissions of underwater volcanoes is substantiated. It is also shown that in the case when the hydrate deposits cover the sea bed natural gas deposits as an impermeable layer, the thermal energy of the gas flow extracted from the sea bed natural gas deposits can be used for the decomposition of the hydrates This case is similar to the considered alternative method of using thermal energy of the emissions of mud volcanoes.

      Practical implications. The use of an alternative method of methane production from gas hydrate sea bed deposits by using emissions of mud volcano make it possible to increase the amount of gas obtained from subaquatic sources ~ by 7-10% without using additional sources of thermal energy. The practical application of this method will also prevent methane emissions from mud volcanoes into the atmosphere, which reduces pollution of seas and oceans with dissolved gases.

      Keywords: methane, deposits of subaqueous gas hydrates, underwater mud volcanoes, fluids, underwater pipelines, fluid thermodynamic parameters


      REFERENCES

  1. Makogon, Y., Holditch, S., & Makogon, T. (2007). Natural gas-hydrates – A potential energy source for the 21st Century. Journal of Petroleum Science and Engineering, 56(1-3), 14-31. https://doi.org/10.1016/j.petrol.2005.10.009
  2. Koltun, P., & Klymenko, V. (2016). Methane hydrates – Australian perspective. Mining of Mineral Deposits, 10(4), 11-18. https://doi.org/10.15407/mining10.04.011
  3. Kvamme, B., Kuznetsova, T., Sapate, A., & Qorbani, K. (2016). Thermodynamic implications of adding N2 to CO2 for production of CH4 from hydrates. Journal of Natural Gas Science and Engineering, (35), 1594-1608. https://doi.org/10.1016/j.jngse.2016.03.095
  4. Archer, D., Buffett, B., & Brovkin, V. (2009). Ocean methane hydrates as a slow tipping point in the global carbon cycle. Proceedings of the National Academy of Sciences, 106(49), 20596-20601. https://doi.org/10.1073/pnas.0800885105
  5. Ovetska, O., Ovetskyi, S., & Vytiaz, O. (2021). Conceptual principles of project management for development of hydrate and other unconventional gas fields as a component of energy security of Ukraine. E3S Web of Conferences, (230), 01021. https://doi.org/10.1051/e3sconf/202123001021
  6. Oveckiy, S., & Savchuk, V. (2016). A method developed to increase technological and ecological efficiency of gas production from hydrate deposits. Eastern-European Journal of Enterprise Technologies, 3(10(81)), 41-47. https://doi.org/10.15587/1729-4061.2016.72545
  7. Bondarenko, V.I., & Sai, K.S. (2018). Process pattern of heterogeneous gas hydrate deposits dissociation. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 21-28. https://doi.org/10.29202/nvngu/2018-2/4
  8. Denysov, Yu.P., & Klymenko, V.V. (2014). Sravnitel’nyy analiz tekhnologii dobychi gazogidratnogo metana. Scientific journal “Geology. Mining. Oil and gas business. Energy”, 1(3), 13-22.
  9. Bondarenko, V., Sai, K., Ganushevych, K., & Ovchynnikov, M. (2015). The results of gas hydrates process research in porous media. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 123-127. https://doi.org/10.1201/b19901-23
  10. Wu, N., Zhang, H., Yang, S., Zhang, G., Liang, J., Lu, J., Su, X., Schultheiss, P., Holland, M., & Zhu, Y. (2011). Gas hydrate system of Shenhu Area, Northern South China Sea: Geochemical results. Journal of Geological Research, (2011), 1-10. https://doi.org/10.1155/2011/370298
  11. Bi, Y., Chen, J., & Miao, Z. (2016). Thermodynamic optimization for dissociation process of gas hydrates. Energy, (106), 270-276.
  12. Chong, Z.R., Yang, S.H.B., Babu, P., Linga, P., & Li, X.-S. (2016). Review of natural gas hydrates as an energy resource: Prospects and challenges. Applied Energy, (162), 1633-1652. https://doi.org/10.1016/j.apenergy.2014.12.061
  13. Shnyukov, Ye.F., Kobolev, V.P., & Pasynkov, A.A. (2013). Gazovyy vulkanizm Chernogo morya. Kyiv, Ukraina: Logos, 383 p.
  14. Uddin, M., Wright, F., Dallimore, S., & Coombe, D. (2014). Seismic correlated Mallik 3D gas hydrate distribution: Effect of geomechanics in non-homogeneous hydrate dissociation by depressurization. Journal of Natural Gas Science and Engineering, (20), 250-270. https://doi.org/10.1016/j.jngse.2014.07.002
  15. da Rosa, A. (2013). Ocean thermal energy converters. Fundamentals of Renewable Energy Processes, 137-147. https://doi.org/10.1016/b978-0-12-397219-4.00004-7
  16. Ocean thermal energy conversion. (2021). Retrieved from: https://en.wikipedia.org/wiki/Ocean_thermal_energy_conversion
  17. Avery, W.H., & Wu, C. (1994). Renewable energy from the ocean: A guide to OTEC. New York, United States: Oxford University Press.
  18. Klymenko, V., Denysov, Y., Skrypnyk, O., Kononchuk, S., & Teliuta, R. (2021). Mining of methane from deposits subaquatic gas hydrates using OTEС. E3S Web of Conferences, (230), 01009. https://doi.org/10.1051/e3sconf/202123001009
  19. Bondarenko, V., Sai, K., Prokopenko, K., & Zhuravlov, D. (2018). Thermodynamic and geomechanical processes research in the development of gas hydrate deposits in the conditions of the Black Sea. Mining of Mineral Deposits, 12(2), 104-115. https://doi.org/10.15407/mining12.02.104
  20. Klymenko, V.V., Vytyaz, O.Yu., & Oveckiy, S.O. (2016). Pro metod vydobuvannia metanu z donnykh hazohidratnykh pokladiv z vykorystanniam vykydiv pidvodnykh vulkaniv. Hazohidratni Tekhnolohii u Hirnytstvi, Naftohazoviy Spravi, Heotekhnitsi ta Enerhetytsi, 8-9.
  21. Kessler, J.D., Reeburgh, W.S., Southon, J., Seifert, R., Michaelis, W., & Tyler, S.C. (2006). Basin-wide estimates of the input of methane from seeps and clathrates to the Black Sea. Earth and Planetary Science Letters, 243(3-4), 366-375. https://doi.org/10.1016/j.epsl.2006.01.006
  22. Greinert, J., Artemov, Y., Egorov, V., Debatist, M., & Mcginnis, D. (2006). 1300-m-high rising bubbles from mud volcanoes at 2080 m in the Black Sea: Hydroacoustic characteristics and temporal variability. Earth and Planetary Science Letters, 244(1-2), 1-15. https://doi.org/10.1016/j.epsl.2006.02.011
  23. Cook, J. (2022). Asphalt_volcano 2. Woods Hole Oceanographic Institution. Retrieved from: https://upload.wikimedia.org/wikipedia/commons/e/ec/Asphalt_volcano2_h.jpg
  24. Shnyukov, Ye., & Kobolev, V. (2018). Gas hydrate deposits of methane in the mud volcanoes of the Black Sea. Geology and Mineral Resources of World Ocean, (1), 5-34. https://doi.org/10.15407/gpimo2018.01.005
  25. Kudrin, I.V., Kudrin, K.I., & Orlyankin, V.M. (2013). Sposob dobychi gazov i presnoy vody iz podvodnykh gazogidratov snizheniyem gidrostaticheskogo davleniya. Patent No. 2402674. Russian Federation.
  26. Ng, H.-J., & Robinson, D.B. (1985). Hydrate formation in systems containing methane, ethane, propane, carbon dioxide or hydrogen sulfide in the presence of methanol. Fluid Phase Equilibria, 21(1-2), 145-155. https://doi.org/10.1016/0378-3812(85)90065-2
  27. Bondarev, E.A., Babe, G.D., & Groysman, A.G. (1976). Mekhanika obrazovaniya gidratov v gazovykh potokakh. Moskva, Rossiya: Nauka (Sibirskoye otdeleniye), 158 s.
  28. Degtyarev, B.V., & Bukhgalter, E.B. (1976). Bor’ba s gidratami pri ekspluatatsii gazovykh skvazhin v severnykh rayonakh. Moskva, Rossiya: Nedra, 198 s.
  29. Makogon, Yu.F. (1974). Gidraty prirodnykh gazov. Moskva, Rossiya: Nedra, 208 s.
  30. Artemov, Yu.G., Egorov, V.N., Gulin, S.B., & Polikarpov, G.G. (2013). New channels for bubble stream discharge of methane in the Sorokin Trough, the Deepwater Black Sea. Marine Ecological Journal, 12(4), 27-36.
  31. Shnyukov, E.F., & Kobolev, V.P. (2018). Gas hydrate deposits in Black Sea mud volcanos. Actual Problems of Oil and Gas. https://doi.org/10.29222/ipng.2078-5712.2018-23.art70
  32. Naudts, L., De Batist, M., Greinert, J., & Artemov, Yu.G. (2009). Geo- and hydro-acoustic manifestations of shallow gas and gas seeps in the Dnepr paleo-delta, northwestern Black Sea. The Leading Edge, 28(9), 1030-1040. https://doi.org/10.1190/1.3236372
  33. Klymenko, V., Gutsul, V., Bondarenko, V., Martynenko, V., & Stets, P. (2019). Modeling of the kinetics of the gas hydrates formation on the basis of a stochastic approach. Solid State Phenomena, (291), 98-109. https://doi.org/10.4028/www.scientific.net/SSP.291.98
  34. Mandryk, O., Arkhypova, L.M., Pukish, A.V., Zelmanovych, A., & Yakovlyuk, Kh. (2017). Theoretical and methodological foundations of sustainable development of geosystems. IOP Conference Series: Materials Science and Engineering, (200), 012018. https://doi.org/10.1088/1757-899X/200/1/012018
  35. Lukin, A.Ye. (2015). Sistema “superplyum – glubokozalegayushchie segmenty neftegazonosnykh basseynov” – neischerpayemyy istochnik uglevodorodov. Heolohichnyi Zhurnal, (2), 7-20.
  36. Лицензия Creative Commons