Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Automated determination of rock crushing zones in the collapse

Bayan Rakishev1, Zaure Rakisheva2, Alma Auezova3, Asfandiyar Orynbay1,3

1Satbayev University, Almaty, Kazakhstan

2Al-Farabi Kazakh National University, Almaty, Kazakhstan

3Almaty University of Power Engineering and Telecommunications, Almaty, Kazakhstan


Min. miner. depos. 2022, 16(3):109-114


https://doi.org/10.33271/mining16.03.109

Full text (PDF)


      ABSTRACT

      Purpose. Development of an automated method for determining the zones of rock crushing in the collapse in order to select rational technologies for drilling and blasting operations.

      Methods. Methods for determining the positions of nodal and internal points of the coordinate grid of blasted rock collapse, approximation methods, matrix theory, numerical methods in technology are used.

      Findings. An automated method for determining the zones of rock crushing in the collapse is described. It is based on an analytical method for determining the granulometric composition of blasted rocks in zones of active and passive crushing. The meth-od correlates the granular composition of the blasted rock mass with blockiness of the rock mass, physical and mechanical properties of the blasted rocks, physical and chemical characteristics of the explosive used, and parameters of charge location in the rock mass.

      Originality. Based on the joint application of methods for determining the nodal and internal points of the coordinate grid and calculation of rock crushing zones in the blasted block, an analytical method for determining the sizes of rock crushing zones in the collapse was developed for the first time in mining.Based on the joint application of methods for determining the nodal and internal points of the coordinate grid and calculation of rock crushing zones in the blasted block, an analytical method for determining the sizes of rock crushing zones in the collapse was developed for the first time in mining.

      Practical implications. On the basis of the developed method, a computer program was created for the automated determination of the crushing zones sizes of a blasted block. With the help of this program, zones of small, medium and large crushing of the blasted block can be quickly and fairly accurately determined under various parameters and conditions of blasting rock masses. Locations of the blasted block crushing zones thus established serve as a tool for choosing rational technologies of drilling, blasting, excavating and loading operations, which determines their practical value.

      Keywords: blockiness, granular composition, D&B parameters, crushing zones, collapse


      REFERENCES

  1. Pokrovskij, G.I., & Fedorov, I.S. (1957). Deystvie udara i vzryva v deformiruemykh sredakh. Moskva, Rossiya: Promstroyizdat, 276 s.
  2. Rakishev, B.R. (2016). Avtomatizirovannoe proektirovanie i proizvod-stvo massovykh vzryvov na kar’erah. Almaty, Kazakhstan: Gylym, 340 s.
  3. Rakishev, B.R., Auezova, A.M., & Rakisheva, Z.B. (2014). The specification of granulometric composition of natural jointing in the rock massif by their average size. Proceedings of the 9th International Conference on Physical Problems of Rock Destruction, 274-282.
  4. Repin, N.Ja. (1978). Podgotovka i ekskavatsiya vskryshnyh porod ugol’nykh razrezov. Moskva, Rossiya: Nedra, 256 s.
  5. Kutuzov, B.N. (2007). Metody vedeniya vzryvnykh rabot. Chast 1. Razrushenie gornykh porod vzryvom. Moskva, Rossiya: Gornaja kniga.
  6. Komir, V.M., & Nazarenko, V.G. (1978). O roli gazoobraznykh produktov detonatsii v protsesse razrusheniya tverdoy sredy pri vzryve. Vzryvnoe Delo, 80(37), 74-80.
  7. Efremov, E.I. (1978). Razrushenie gornykh porod energiey vzryva. Kiev, Ukraina: Naukova dumka, 264 s.
  8. Hanukaev, A.N. (1974). Fizicheskie processy pri otboyke gornykh porod vzryvom. Moskva, Rossiya: Nedra, 223 s.
  9. Trubetskoy, K.N., & Viktorov, S.D. (1999). Sovremennye problemy razrusheniya massivov gornykh porod. Fizicheskie Problemy Vzryvnogo Razrusheniya Massivov Gornykh Porod, 7-17.
  10. Adushkin, V.V., Budkov, A.M., & Kocharyan, G.G. (2007). Features of the formation of the zone of destruction of the explosion in the rock mass. Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, (3), 65-76.
  11. Viktorov, S.D., & Galchenko, Yu.P. (2018). Theoretical and experimental studies of the nature of the energy distribution in a rock mass during the explosion of technological charges. Inzhenernaja Fizika, (7), 43-50.
  12. Galushko, F.I., Komyachin, A.O., & Musatova, I.N. (2017). Managing the quality of explosive rock preparation based on optimization of the parameters of explosives. Vzryvnoe Delo, 118(75), 140-151.
  13. Dugartsyrenov, A.V., & Rakhmanov, R.A. (2019). Evaluation of the effect of air gaps on the efficiency of blasting borehole charges. Vzryvnoe Delo, 122(79), 59-68.
  14. Rakishev, B.R. (2020). Formation of granulometric composition of blasted rocks with concessive blasting. Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, (1), 41-53.
  15. Shen, W.-G., Zhao, T., Crosta, G.B., & Dai, F. (2017). Analysis of impact-induced rock fragmentation using a discrete element approach. International Journal of Rock Mechanics and Mining Sciences, (98), 33-38. https://doi.org/10.1016/j.ijrmms.2017.07.014
  16. Xie, L.X., Yang, S.Q., Gu, J.C., Zhang, Q.B., Lu, W.B., Jing, H.W., & Wang, Z.L. (2019). JHR constitutive model for rock under dynamic loads. Computers and Geotechnics, (108), 161-172. https://doi.org/10.1016/j.compgeo.2018.12.024
  17. An, H.M., Liu, H.Y., Han, H., Zheng, X., & Wang, X.G. (2017). Hybrid finite-discrete element modelling of dynamic fracture and resultant fragment casting and muck-piling by rock blast. Computers and Geotechnics, (81), 322-345. https://doi.org/10.1016/j.compgeo.2016.09.007
  18. Furtney, J.K., Andrieux, P., & Hall, A.K. (2016). Applications for numerical modeling of blast induced rock fracture. American Rock Mechanics Association, (621), 7.
  19. Mao, Z., Liu, G., Huang, Y., & Bao, Y. (2019). A conservative and consistent Lagrangian gradient smoothing method for earthquake-induced landslide simulation. Engineering Geology, (260), 105226. https://doi.org/10.1016/j.enggeo.2019.105226
  20. Gusak, A.A., Gusak, G.M., & Brichikova, E.A. (1999). Spravochnik po vysshey matematike v dvukh tomakh. Minsk, Belarus: Tetrasistems, 640 s.
  21. Rakishev, B.R., Rakisheva, Z.B., & Orynbay, A.A. (2020). Computer-aided creation of coordinate grid for blasted rock block. Mining Informational and Analytical Bulletin, (8), 40-51. https://doi.org/10.25018/0236-1493-2020-8-0-40-51
  22. Zenkevich, O. (1975). Method of finite elements in technology. Moscow, Russian Federation: Mir, 320 p.
  23. Gantmakher, F.R. (1966). Teoriya matrits. Moskva, Rossiya: Nauka, 581 s.
  24. Rakishev, B., Rakisheva, Z., Auezova, A., & Orynbay, А. (2020). Automated determination of internal points of the coordinate grid of the blasted rock mass. E3S Web of Conferences, (168), 00015. https://doi.org/10.1051/e3sconf/202016800015
  25. NET Framework Guide. (2021). Retrieved from: https://docs.microsoft.com/en-us/dotnet/framework/index
  26. Powers, L., & Snell, M. (2015). Microsoft visual studio 2015 un-leashed. Indianapolis, United States: Imprint Sams, 1320 p.
  27. Лицензия Creative Commons