Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Geology, mineralogy and geochemistry of manganese ore deposits of the Um Bogma Formation, south-western Sinai, Egypt: genesis implications

Shaimaa El-Shafei1, Fatma Ramadan1, Mohamed Essawy1, Ahmed Henaish1, Bassem Nabawy2

1Zagazig University, Zagazig-Sharkia, Egypt

2National Research Center, Cairo, Egypt


Min. miner. depos. 2022, 16(3):86-95


https://doi.org/10.33271/mining16.03.086

Full text (PDF)


      ABSTRACT

      Purpose.This paper aims to understand the genesis and nature of the manganese ore deposits associated with the Ras Samra Member of the Um Bogma Formation in the southwest of Sinai.

      Methods. Mineralogical and geochemical studies of 50 selected samples of manganese ores and host shale have been conducted. These samples have been taken from different sites representing the Ras Samra Member.

      Findings. The dominant manganese minerals are pyrolusite and hausmannite. In most samples, helvite and hematite are noted in association with pyrolusite. In the investigated manganese ores, wide ranges of MnO (17.70-81.90 wt. %) and Fe2O3 (1.16-65.49 wt. %) concentrations are observed. Based on their Mn/Fe ratio, they can be classified into high-Mn ore content (76.94-6.46%), medium-Mn ore content (4.87-2.58%), and low-Mn ore content (1.51-0.30%).

      Originality. The compositions of major and trace elements in Ras Samra manganese ores, together with their textures and mineralogical compositions, suggest an epigenetic hydrothermal contribution for high-Mn ores, as well as syngenetic sedimentary precipitation for medium- Mn and low-Mn ores. The epigenetic nature of the high-Mn samples may be related to a younger phase of hydrothermal activity associated with Tertiary basalt flows. Ore-bearing hypogene solutions, which penetrate the bedding planes, have impregnated and cemented non-diagenetic terrigenous sandstones and shale.

      Practical implications. In contrast to low-Mn ores, high-Mn and medium-Mn ores of Um Bogma are preferable for obtai-ning a significant economic effect in the production of ferromanganese alloys. However, low-Mn ores need to be processed appropriately to achieve the desired quality in order to meet the present level of manganese demand in Egypt.

      Keywords: manganese ores, Um-Bogma Formation, geochemistry, genesis, X-ray diffraction, X-ray fluorescence analysis


      REFERENCES

  1. Nicholson, K., Hein, J.R., Bühn, B., & Dasgupta, S. (1997). Manganese mineralization – Geochemistry and mineralogy of terrestrial and marine deposits. Bath, United Kingdom: Geological Society Special Publication, 370 p.
  2. Hein, J.R., Kochinsky, A., Halbach, P., Manheim, F.T., Bau, M., Kang, J.K., & Lubick, N. (1997). Iron and manganese oxide mineralization in the Pacific. Manganese Mineralization: Geochemistry and Mineralogy of Terrestrial and Marine Deposits, 119-123. https://doi.org/10.1144/GSL.SP.1997.119.01.09
  3. Maynard, J.B. (2010). The chemistry of manganese ores through time: A signal of increasing diversity of Earth-surface environments. Economic Geology, 105(3), 535-552. https://doi.org/10.2113/gsecongeo.105.3.535
  4. Varentsov, I.M. (1996). Manganese ores of supergene zone: Geochemistry of formation. Dordrecht, Netherlands: Kluwer Academic Publishers, 343 p. https://doi.org/10.1007/978-94-017-2174-5
  5. Khalifa, I.H., & Seif, R.A. (2014). Geochemistry of manganese-iron ores at um Bogma area, west central Sinai, Egypt. International Journal of Advanced Science and Technology, (6), 1-6.
  6. Moustafa, A.R. (2004). Geologic maps of the Eastern side of the Suez rift (western Sinai Peninsula), Egypt. AAPG/Datapages, Inc. GIS Series (Geologic Maps and Cross Sections in Digital Format on CD).
  7. Steinitz, G., Bartov, Y., & Hunziker, J.C. (1978). K-Ar age determinations of some Miocene-Pliocene basalts in Israel: Their significance to the tectonics of the Rift Valley. Geological Magazine, 115(5), 329-340. https://doi.org/10.1017/S0016756800037341
  8. Kora, M. (1984). The Palaeozoic exposures of Urn Bogma area, Sinai. PhD Thesis. Mansoura, Egypt: Mansoura University, 280 p.
  9. Wanas, H.A. (2011). The Lower Paleozoic rock units in Egypt: An overview. Geoscience Frontiers, 2(4), 491-507. https://doi.org/10.1016/j.gsf.2011.06.004
  10. El-Aref, M.M., Abdel-Wahid, M., & Kabesh, M. (1988). On the geology of the basement rocks, East of Abu Zenima, west central Sinai. Egyptian Journal of Geology, 32(1-2), 1-25.
  11. El Sharkawi, M.A., El Aref, M.M., & Abdel Motelib, A. (1990). Manganese deposits in a Carboniferous paleokarst profile, Um Bogma region, west-central Sinai, Egypt. Mineralium Deposita, (25), 34-43. https://doi.org/10.1007/BF03326381
  12. Mansour, M (1994). Sedimentology and radioactivity of Um Bogma Formation, West Central Sinai, Egypt. MSc Thesis. Egypt: Suez Canal University, 157 p.
  13. Kora, M., El Shahat, A., & Abu Shabana, M.A. (1994) Lithostratigraphy of the manganese-bearing Um Bogma Formation, west-central Sinai, Egypt. Journal of African Earth Sciences, 18(2), 15-162. https://doi.org/10.1016/0899-5362(94)90027-2
  14. Ashami, A.S. (2003). Structural and lithologic controls of uranium and copper mineralization in Um Bogma environs, southwestern Sinai, Egypt. PhD Thesis. Mansoura, Egypt: Mansoura University, 134p.
  15. Elagami, N.L., Ibrahim, E.H., & Odah, H.H. (2000). Sedimentary origin of the Mn-Fe ore of Um Bogma, southwest Sinai: Geochemical and paleomagnetic evidence. Economic Geology, 95(3), 607-620. https://doi.org/10.2113/95.3.607
  16. Kora, M. (1989). Lower Carboniferous (Viséan) fauna from Wadi Budra, west-central Sinai, Egypt. Neues Jahrbuch für Geologie und Paläontologie-Monatshefte, 523-538. https://doi.org/10.1127/njgpm/1989/1989/523
  17. Soliman, M.S., & Abu El Fetouh, M.A. (1969). Petrology of Carboniferous sandstones in west central Sinai. Journal of Geology of the United Arab Republic, 13(2), 61-143.
  18. Hilmy, M.E., & Mohsen, M. (1965). Secondary copper minerals from west central Sinai. Egyptian Journal of Geology, (9), 1-12.‏
  19. Nabawy, B.S., & David, C. (2016). X-Ray CT scanning imaging for the Nubia sandstone as a tool for characterizing its capillary properties. Geosciences Journal, 20(5), 691-704. https://doi.org/10.1007/s12303-015-0073-7
  20. El Aassy, I.E., El Rakaiby, M.L., & Botros, N.H. (1990). Geology and radioactivity of East Abu Zeneima Area, Sinai, Egypt. Annals of the Geological Survey of Egypt, (16), 285-288.
  21. Elagami, N.L. (1996). Geology and radioactivity studies on the Paleozoic rock units of Sinai Peninsula, Egypt. PhD Thesis. Mansoura, Egypt: Mansoura University, 302 p.
  22. Botros, N.H. (1995). The effect of rift tectonics on the mode of distribution of uranium bearing-sediments, Um Bogma area, West Central Sinai, Egypt. Proceedings of Egypt Academic of Science, (45), 193-204.
  23. Aita, S.K. (1996). Geological, mineralogical and geochemical studies on some radioactive anomalies of the Paleozoic sediments of Um Bogma area, west central Sinai, Egypt. MSc Thesis. Cairo, Egypt: Cairo University, 262 p.
  24. Weissbrod, T. (1969). The Palaeozoic of Israel and adjacent countries; Part II: The Palaeozoic outcrops in southwestern Sinai and their correlation with those of southern Israel. Bulletin Geological Survey Israel, (48), 1-32.
  25. Dorokhin, I.V., Bogachero, E.N., Druzhiniv, A.V., Soboleviski, V.I., & Gorbunove, V. (1969). Economic mineral deposits. Moscow, Russian Federation: Higher school, 368 p.
  26. Conly, A.G., Scott, S.D., & Bellon, H. (2011). Metalliferous manganese oxide mineralization associated with the Boleo Cu-Co-Zn district, Mexico. Economic Geology, 106(7), 1173-1196. https://doi.org/10.2113/econgeo.106.7.1173
  27. Gromet, L.P., Dymek, R.F., Haskin, L.A., & Korotev, R.L. (1984). The “North American shale composite”: Its compilation, major and trace element characteristics. Geochim Cosmochim Acta, (48), 2469-2482. https://doi.org/10.1016/0016-7037(84)90298-9
  28. Bauerman, H. (1869). Note on a geological reconnaissance made in Arabia Petræa in the Spring of 1868. The Quarterly journal of the Geological Society of London, 25(1-2), 17-38. https://doi.org/10.1144/GSL.JGS.1869.025.01-02.15
  29. Attia, M.I. (1956). Manganese deposits of Egypt. In Proceedings of the 20th International Geological Congress, (II), 143-171.
  30. Eisenlohr, V. (1965). Untersuchung der Manganerzlagerst~itten, Um Bogma bei Abu Zeneima auf der Halbinsel Sinai. Schriften der Ges Dtsch Metallhiatten und Bergleut, (15), 101-104.
  31. Beyth, M. (1987). Mineralization related to rift systems: Examples from the Gulf of Suez and the Dead Sea Rift. Techtonophysics, (141), 191-197. https://doi.org/10.1016/0040-1951(87)90185-5
  32. Hassan, M.M., El-Ghawaby, M.A., Hilmy, M.E., Abu El-Izz, A.R., & Shehab, M. (1989). Iron manganese and copper mineralization in the Carboniferous sandstone, west central Sinai, Egypt. In Proceedings of the First Conference on Geochemistry, Alexandria University, 104-117.
  33. El Shazly, E.M., Shukri, N.N., & Saleeb, G.S. (1963). Geological studies of Oleikat, Marahil and Um Sakran manganese-iron deposits, west central Sinai. Journal of Geology, 7(1), 1-27.
  34. Faris, M.I., Youssef, M.I., & Kamel, O.A. (1963). Geology and origin of some vein manganese ores in Sinai: Cairo, Egypt. Ain Shams Science Bulletin, (9), 458-515.
  35. Mart, J., & Sass, E. (1972). Geology and origin of the manganese ore of Um Bogma, Sinai. Economic Geology, 67(2), 145-155. https://doi.org/10.2113/gsecongeo.67.2.145
  36. Magaritz, M., & Brenner, I.B. (1979). The geochemistry of a lenticular manganese-ore deposit (Um Bogma, Southern Sinai). Mineralium Deposita, 14(1), 1-13. https://doi.org/10.1007/BF00201863
  37. Saleeb-Roufaiel, G.S., Yanni, N.N., & Arner, K.M. (1987). Contribution to the study of manganese-iron deposits at Urn Bogma area, Sinai. Earth Sciences Series, (1), 98-107.
  38. Zaghloul, Z.M., El Shahat, A., Kora, M., & Abu Shabana, M. (1995). Modes of occurrence, geochemistry and origin of the Mn-Fe deposits of Um Bogma, west central Sinai, Egypt. Journal of Environmental Sciences, (9), 29-59.
  39. Rona, P.A. (1978). Criteria for recognition of hydrothermal mineral deposits in oceanic crust. Economic Geology, 73(2), 135-160. https://doi.org/10.2113/gsecongeo.73.2.135
  40. Salem, I.A., El-Shibiny, N.H., & Abdel Monsef, M. (2016). Mineralogical and geochemical studies on manganese deposits at Abu Ghusun Area, South Eastern Desert, Egypt. Journal of Geography and Earth Sciences, 4(2), 51-74. https://doi.org/10.15640/jges.v4n2a4
  41. Toth, J.R. (1980). Deposition of submarine crusts rich in manganese and iron. Geological Society of America Bulletin, 91(1), 44-54. https://doi.org/10.1130/0016-7606(1980)91<44:DOSCRI>2.0.CO;2
  42. Nicholson, K. (1992). Contrasting mineralogical-geochemical signatures of manganese oxides; guides to metallogenesis. Economic Geology, 87(5), 1253-1264. https://doi.org/10.2113/gsecongeo.87.5.1253
  43. Nicholson, K. (1992). Genetic types of manganese oxide deposits in Scotland; indicators of paleo-ocean-spreading rate and a Devonian geochemical mobility boundary. Economic Geology, 87(5), 1301-1309. https://doi.org/10.2113/gsecongeo.87.5.1301
  44. Nicholson, K. (1988). An ancient manganese-iron deposit of freshwater origin, Islay, Argyllshire. Scottish Journal of Geology, 24(2), 175-187. https://doi.org/10.1144/sjg24020175
  45. Zantop, H. (1981). Trace elements in volcanogenic manganese oxides and iron oxides: the San Francisco manganese deposit, Jalisco, Mexico Economic Geology, 76(3), 545-555. https://doi.org/10.2113/gsecongeo.76.3.545
  46. Krauskopf, K.B. (1957). Separation of manganese from iron in sedimentary processes. Geochim Cosmochim Acta, 12(1-2), 61-84. https://doi.org/10.1016/0016-7037(57)90018-2
  47. Simmonds, V., & Ghasemi, F. (2007). Investigation of manganese mineralization in Idahlu and Jokandy, southwest of Hashtrood, NW Iran. BHM Bergund Hüttenmännische Monatshefte, 152(8), 263-267. https://doi.org/10.1007/s00501-007-0308-7
  48. Zantop, H. (1978). Geologic setting and genesis of iron oxides and manganese oxides in the San Francisco manganese deposit, Jalisco, Mexico. Economic Geology, 73(6), 1137-1149. https://doi.org/10.2113/gsecongeo.73.6.1137
  49. Segev, A. (1984). Gibbsite mineralization and its genetic implication for the Um Bogma manganese deposit, southwestern Sinai. Mineralium Deposita, 19(1), 54-62. https://doi.org/10.1007/BF00206597
  50. Hein, J.R., Schulz, M.S., Dunham, R.E., Stern, R.J., & Bloomer, S.H. (2008) Diffuse flow hydrothermal manganese mineralization along the active Mariana and southern Izu-Bonin arc system, western Pacific. Journal of Geophysical Research, (1130), 1-29. https://doi.org/10.1029/2007JB005432
  51. Fahim, M.S., El Faramawy, H., Ahmed, A.M., Ghali, S.N., & Kandil, H.T. (2013). Characterization of Egyptian manganese ores for production of high carbon ferromanganese. Journal of Minerals and Materials Characterization and Engineering, 1(2), 68-74. https://doi.org/10.4236/jmmce.2013.12013
  52. Binta, H. (2013). Upgrading of Wasagu manganese ore to metallurgical grade concentrate. MSc Thesis. Zaria, Nigeria: Ahmadu Bello University, 66 p.
  53. Yaro, S.A. (1998). Development of a process route for the beneficiation of Mallam Ayuba manganese deposit to ferromanganese feed grade. PhD Thesis. Zaria, Nigeria: Ahmadu Bello University, 79 p.
  54. Pochart, G., Joncourt, L., Touchard, N., & Perdon, C. (2007). Metallurgical benefit of reactive high grade ore in manganese alloys manufacturing. World, 800(1000), 1200.
  55. Muriana, R.A., Muzenda, E., & Abubakre, O.K. (2014). Extraction and production kinetics of industrial – grade manganese sulphates crystal from manganese. Journal of Engineering Research, (19), 78-90.
  56. Muriana, R.A., Muzenda, E., & Abubakre, O.K. (2014). Carbothermic reduction kinetics of Ka’oje (Nigeria) manganese ore. Journal of Minerals and Materials Characterization and Engineering, (2), 392-403. https://doi.org/10.4236/jmmce.2014.25044
  57. Mücke, A. (2003). General and comparative considerations of whole-rock and mineral compositions of Precambrian iron-formations and their implications. Neues Jahrbuch für Mineralogie-Abhandlungen, 175-219. https://doi.org/10.1127/0077-7757/2003/0179-0175
  58. Vanderstaay, E.C., Swinbourne, D.R., & Monteiro, M. (2004). A computational thermodynamics model of submerged arc electric furnace ferromanganese smelting. Mineral Processing and Extractive Metallurgy, 113(1), 38-44. https://doi.org/10.1179/037195504225004706
  59. Binta, H., Yaro, S.A., Thomas, D.G., & Dodo, M.R. (2016). Beneficiation of low grade manganese ore from Wasagu, Kebbi State, Nigeria. Journal of Materials Research, 13(2), 1-8.
  60. Mishra, P., Mohapatra, B.K., & Singh, P.P. (2006). Mode of occurrence and characteristics of Mn‐ore bodies in iron ore group of rocks, North Orissa, India and its significance in resource evaluation. Resource Geology, 56(1), 55-64. https://doi.org/10.1111/j.1751-3928.2006.tb00268.x
  61. Лицензия Creative Commons