Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Management of the longwall face advance on the stress-strain state of rock mass

Iaroslav Shavarskyi1, Volodymyr Falshtynskyi2, Roman Dychkovskyi3, Oleksandr Akimov4, Dariusz Sala3, Valentyn Buketov5

1JARAD Recycling Technology Sp. z o.o, Smolnica, Poland

2Dnipro University of Technology, Dnipro, Ukraine

3AGH University of Science and Technology, Krakow, Poland

4Interregional Academy of Personnel Management, Kyiv, Ukraine

5Universidad Nacional de San Agustin de Arequipa, Arequipa, Peru


Min. miner. depos. 2022, 16(3):78-85


https://doi.org/10.33271/mining16.03.078

Full text (PDF)


      ABSTRACT

      Purposeis to study influence of a longwall face advance on the geomechanical situation in the neighbourhood of a mining site based upon determination of changes in standard and critical subsidence of the immediate roof rocks.

      Methods. To study a geomechanical situation in the neighbourhood of a mining site the authors have applied software product GeoDenamics Lite developed at Dnipro University of Technology. The software product relies upon a calculation procedure of stress-strain state of rocks by Professor O.V. Savostianov. Expediency of the software selection is based upon the supported control and adaptation of a coal mining technique to changes in geodynamic stress fields in the anisotropic rock-coal medium impacting temporal and spatial changes in the technological parameters.

      Findings. The basic problems have been singled out connected with certain changes in a longwall face advance. For the first time, an analytical scheme of tangential stresses within the immediate roof rocks has been developed for Lisova mine of SE Lvivvuhillia under the conditions of coal seam mining by means of the paired longwalls which makes it possible to determine both physical and geometrical parameters of standard loads within the formation.

      Originality. Dependencies of temporal and spatial changes in subsidences and horizontal displacements of rock layers of the immediate roof have been defined being 5.2 m for the upper rock pack and 3.9 m for the lower pack if the longwall longwall face advance is 1.9 up to 4.8 m/day. Both physical and geometrical parameters of the reference pressure have been defined as well as the parameters of lower sandstone pack in the process of the main roof subsidence. Impact of the extra pressure forces on the immediate roof rocks has been analyzed at the moment of critical lowerings of the immediate roof rocks. In this context, standard loading from the overlying formation in addition to tangential stresses in the roof result in rock failure due to vertical cracks above a longwall face.

      Practical implications. The engineering methods have been developed making it possible to identify impact parameters of a longwall face advance on the geomechanical situation in the neighbourhood of a mining site. In future, it will help forecast changes in the reference pressure around a longwall face while preventing emergency settlement of the powered support.

      Keywords: mine, longwall face, coal seam, rock mass, stress-strain state


      REFERENCES

  1. Bazaluk, O., Ashcheulova, O., Mamaikin, O., Khorolskyi, A., Lozynskyi, V., & Saik, P. (2022). Innovative activities in the sphere of mining process management. Frontiers in Environmental Science, (10), 878977. https://doi.org/10.3389/fenvs.2022.878977
  2. Moellerherm, S., Kretschmann, J., Tiganj, J., & Poplawski, M. (2022). Post-mining challenges and knowledge transfer for the ukrainian coal industry. IOP Conference Series: Earth and Environmental Science, 1(970), 012034. https://doi.org/10.1088/1755-1315/970/1/012034
  3. Supeni, N., Istifadah, I., & Awwaliyah, I.N. (2022). The effect of the russia-Ukraine war on stock price volatility of state-owned companies in the mining sub-sector on the Indonesia stock exchange. International Social Sciences and Humanities, 1(2), 233-241. https://doi.org/10.32528/issh.v1i2.179
  4. Saik, P., Petlovanyi, M., Lozynskyi, V., Sai, K., & Merzlikin, A. (2018). Innovative approach to the integrated use of energy resources of underground coal gasification. Solid State Phenomena, (277), 221-231. https://doi.org/10.4028/www.scientific.net/SSP.277.221
  5. Wang, X., & Lo, K. (2022). Political economy of just transition: Disparate impact of coal mine closure on state-owned and private coal workers in Inner Mongolia, China. Energy Research & Social Science, (90), 102585. https://doi.org/10.1016/j.erss.2022.102585
  6. Yang, X., Krul, K., & Sims, D. (2022). Uncovering coal mining accident coverups: An alternative perspective on Chinas new safety narrative. Safety Science, (148), 105637. https://doi.org/10.1016/j.ssci.2021.105637
  7. Smoliło, J., Chmiela, A., Gajdzik, M., Menéndez, J., Loredo, J., Turek, M., & Bernardo-Sánchez, A. (2021). A new method to analyze the mine liquidation costs in Poland. Mining, 1(3), 351-363. https://doi.org/10.3390/mining1030022
  8. Xu, G., Wang, X., Wang, R., Yano, G., & Zou, R. (2021). Anti-corruption, safety compliance and coal mine deaths: Evidence from China. Journal of Economic Behavior & Organization, (188), 458-488. https://doi.org/10.1016/j.jebo.2021.05.013
  9. Zehirov, S., Kaykov, D., & Koprev, I. (2017). A review of combining open-pit and underground mining methods around the world. Journal of Mining and Geological Sciences, 60(Part II), 17-20.
  10. Afum, B.O., & Ben-Awuah, E. (2021). A review of models and algorithms for surface-underground mining options and transitions optimization: Some lessons learnt and the way forward. Mining, 1(1), 112-134. https://doi.org/10.3390/mining1010008
  11. Stupnik, M., Kolosov, V., Kalinichenko, V., & Pismennyi, S. (2014). Physical modeling of waste inclusions stability during mining of complex structured deposits. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining, 25-30. https://doi.org/10.1201/b17547
  12. Koval, V., Mikhno, I., Udovychenko, I., Gordiichuk, Y., & Kalina, I. (2021). Sustainable natural resource management to ensure strategic environmental development. TEM Journal, 1022-1030. https://doi.org/10.18421/tem103-03
  13. Zhautikov, F.B., Isagulov, A.Z., Zhautikov, B.A., Romanov, V.I., & Babenko, A.A. (2019). Development and Implementation of a Device for the Separation of Metal and Slag During Tundish Filling. Metallurgist, 63(7-8), 672-674. https://doi.org/10.1007/s11015-019-00874-z
  14. Dairbekova, G., Zhautikov, B., Zobnin, N., Bekmagambetov, D., & Tolubayeva, D. (2021). Use of Si-composite aspiration dusts production in the creation of thin-film anodes. Metalurgija, 60(3-4), 419-422.
  15. Zhaslan, R.K., Zhautikov, B.A., Romanov, V.I., Aikeyeva, A.A., & Yerzhanov, A.S. (2022). Improvement of methods for semi-finished carbon product tapping from the basic oxygen furnace. Metalurgija, 61(1), 203-205.
  16. Małkowski, P. (2017). Management of mining hazard monitoring. Inzynieria Mineralna, (2), 215-224. https://doi.org/10.29227/IM-2017-02-24
  17. Petrov, N.I., Dimitrova, K.Y., & Baskanbayeva, D.D. (2021). On the reliability of technological innovation systems. IOP Conference Series: Materials Science and Engineering, (1031), 012044. https://doi.org/10.1088/1757-899X/1031/1/012044
  18. Kryshtanovych, M., Akimova, L., Akimov, O., Kubiniy, N., & Marhitich, V. (2021). Modeling the process of forming the safety potential of engineering enterprises. International Journal of Safety and Security Engineering, 11(3), 223-230. https://doi.org/10.18280/ijsse.110302
  19. Kobylkin, D., Zachko, O., Popovych, V., Burak N., Golovatyi, R., & Carsten, W. (2019). Models for changes management in infrastructure projects. CEUR Workshop Proceedings, (2565), 106-115.
  20. Sala, D., & Bieda, B. (2019). Application of uncertainty analysis based on Monte Carlo (MC) simulation for life cycle inventory (LCI). Inzynieria Mineralna, 2(2-44), 263-268. https://doi.org/10.29227/im-2019-02-80
  21. Pysmenniy, S., Shvager, N., Shepel, O., Kovbyk, K., & Dolgikh, O. (2020). Development of resource-saving technology when mining ore bodies by blocks under rock pressure. E3S Web of Conferences, (166), 02006. https://doi.org/10.1051/e3sconf/202016602006
  22. Bekbassarov, S., Soltabaeva, S., Daurenbekova, A., & Ormanbekova, A. (2015). “Green” economy in mining. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 431-434. https://doi.org/10.1201/b19901-75
  23. Vasylieva, I.V. (2019). Contents of germanium in coal seams Lviv-Volyn basin and Donbas. Mineral Resources of Ukraine, (3), 11-14. https://doi.org/10.31996/mru.2019.3.11-14
  24. Law, B.E., Ulmishek, G.F., Clayton, J.L., Kabyshev, B.P., Pashova, N.T., & Krivosheya, V.A. (1998). Basin-centered gas evaluated in Dnieper-Donets basin, Donbas foldbelt, Ukraine. Oil and Gas Journal, 96(47), 74-78.
  25. Koveria, A., Kieush, L., Hrubyak, A., & Kotsyubynsky, V. (2019). Properties of Donetsk basin hard coals and the products of their heat treatment revealed via Mossbauer spectroscopy. Petroleum and Coal, 61(1), 160-168.
  26. Dychkovskyi, R.O., Avdiushchenko, A.S., Falshtynskyi, V.S., & Saik, P.B. (2013). On the issue of estimation of the coal mine extraction area economic efficiency. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 107-114.
  27. Lipka, W., & Szwed, C. (2021). Multi-attribute rating method for selecting a clean coal energy generation technology. Energies, 14(21), 7228. https://doi.org/10.3390/en14217228
  28. Dychkovskyi, R.O. (2015). Determination of the rock subsidence spacing in the well underground coal gasification. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 30-36.
  29. Dychkovskyi, R.O. (2015). Forming the bilayer artificially shell of georeactor in underground coal gasification. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 37-42.
  30. Golovchenko, A., Dychkovskyi, R., Pazynich, Y., Cceres, C., Howaniec, N., Bartomiej, J., & Smolinski, A. (2020). Some aspects of the control for the radial distribution of burden material and gas flow in the blast furnace. Energies, 13(4), 923. https://doi.org/10.3390/en13040923
  31. Dychkovskyi, R., Tabachenko, M., Zhadiaieva, K., Dyczko, A., & Cabana, E. (2021). Gas hydrates technologies in the joint concept of geoenergy usage. E3S Web of Conferences, (230), 01023. https://doi.org/10.1051/e3sconf/202123001023
  32. Abdullayev, S.S., Bondar, I.S., Bakyt, G.B., Ashirbayev, G.K., Budiukin, A.M., & Baubekov, Y.Y. (2021). Interaction of frame structures with rolling stock. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 1(445), 22-28. https://doi.org/10.32014/2021.2518-170X.3
  33. Baskanbayeva, D.D., Krupnik, L.A., Yelemessov, K.K., Bortebayev, S.A., & Igbayeva, A.E. (2020). Justification of rational parameters for manufacturing pump housings made of fibroconcrete. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 68-74. https://doi.org/10.33271/nvngu/2020-5/068
  34. Dhillon, B.S. (2008). Mining equipment reliability (pp. 57-70). London, United States: Springer. https://doi.org/10.1007/978-1-84800-288-3_4
  35. Zhussupov, K., Toktamyssova, A., Abdullayev, S., Bakyt, G., & Yessengaliyev, M. (2018). Investigation of the stress-strain state of a wheel flange of the locomotive by the method of finite element modeling. Mechanics, 24(2), 17637. https://doi.org/10.5755/j01.mech.24.2.17637
  36. Taran, I.A. (2012). Laws of power transmission on branches of double-split hydrostatic mechanical transmissions. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 69-75.
  37. Taran, I.A. (2012). Interrelation of circular transfer ratio of double-split transmissions with regulation characteristic in case of planetary gear output. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (3), 78-85.
  38. Jeremic, M.L. (2020). Longwall mining. Strata Mechanics in Coal Mining, 297-353. https://doi.org/10.1201/9781003079170-8
  39. Bitimbaev, M.Zh., & Edygenov, E.K. (2001). Scientific and technological developments of the institute in the field of mining matter. Gornyi Zhurnal, (11), 86-89.
  40. Wei, J., Zhang, J., Wu, X., & Song, Z. (2022). Governance in mining enterprises: An effective way to promote the intensification of resources – Taking coal resources as an example. Resources Policy, (76), 102623. https://doi.org/10.1016/j.resourpol.2022.102623
  41. Majkherchik, T., Gajko, G.I., & Malkowski, P. (2002). Deformation process around a heading investigation when front of longwall face advancing. Ugol, (11), 27-29.
  42. Vlasov, S., Moldavanov, Y., Dychkovskyi, R., Cabana, E., Howaniec, N., Widera, K., & Smoliński, A. (2022). A generalized view of longwall emergency stop prevention (Ukraine). Processes, 10(5), 878. https://doi.org/10.3390/pr10050878
  43. Hong-Sheng, T., Shi-Hao, T., Cun, Z., Lei, Z., & Xiao-Gang, Z. (2017). Characteristics of the roof behaviors and mine pressure manifestations during the mining of steep coal seam. Archives of Mining Sciences, 62(4), 871-891. https://doi.org/10.1515/amsc-2017-0060
  44. Abdiev, A.R., Mambetova, R.S., & Mambetov, S.A. (2017). Geomechanical assessment of Tyan-Shan’s mountains structures for efficient mining and mine construction. Gornyi Zhurnal, (4), 23-28. https://doi.org/10.17580/gzh.2017.04.04
  45. Krukovskyi, O., Kurnosov, S., Makeiev, S., Ryzhov, H., & Pilipenko, Y. (2022). Tamponage of massif by modern polymeric materials for isolating mined-out areas in the coal seams prone to spontaneous ignition. IOP Conference Series: Earth and Environmental Science, 970(1), 012046. https://doi.org/10.1088/1755-1315/970/1/012046
  46. Zhou, Y., Feng, S., & Li, J. (2021). Study on the failure mechanism of rock mass around a mined-out area above a highway tunnel-Similarity model test and numerical analysis. Tunnelling and Underground Space Technology, (118), 104182. https://doi.org/10.1016/j.tust.2021.104182
  47. Ren, F., Zhou, Y., He, R., Cao, J., & Zou, K. (2021). Similarity model test on the spatiotemporal evolution law of deformation and failure of surrounding rock-induced caving in multi-mined-out areas. Advances in Civil Engineering, (2021), 1224658. https://doi.org/10.1155/2021/1224658
  48. Bondarenko, V., Symanovych, G., & Koval, O. (2012). The mechanism of over-coal thin-layered massif deformation of weak rocks in a longwall. Geomechanical Processes During Underground Mining, 41-44. https://doi.org/10.1201/b13157-8
  49. Bondarenko, V.I., Kharin, Ye.N., Antoshchenko, N.I., & Gasyuk, R.L. (2012). Basic scientific positions of forecast of the dynamics of methane release when mining the gas bearing coal seams. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 24-30.
  50. Sdvizhkova, Ye.A., Babets, D.V., & Smirnov, A.V. (2015). Support loading of assembly chamber in terms of Western Donbas plough longwall. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 26-32.
  51. Dychkovskyi, R., Shavarskyi, Ia., Saik, P., Lozynskyi, V., Falshtynskyi, V., & Cabana, E. (2020). Research into stress-strain state of the rock mass condition in the process of the operation of double-unit longwalls. Mining of Mineral Deposits, 14(2), 85-94. https://doi.org/10.33271/mining14.02.085
  52. Savostianov, O.V. (2016). Metody prohnozu heomekhanichnykh protsesiv dlia vyboru tekhnolohichnykh parametriv vidpratsiuvannia polohykh plastiv. Dnipro, Ukraina: NMU, 246 s.
  53. Bondarenko, V., & Dychkovskiy, R. (2006). Methods of extraction of thin and rather thin coal seams in the works of the scientists of the Underground Mining Faculty (National Mining University). New Technological Solutions in Underground Mining International Mining Forum, 21-25. https://doi.org/10.1201/NOE0415401173.ch3
  54. Bondarenko, V.I., Griadushchiy, Y.B., Dychkovskiy, R.O., Korz, P.P., & Koval, O.I. (2007). Advanced experience and direction of mining of thin coal seams in Ukraine. Technical, Technological and Economic Aspects of Thin-Seams Coal Mining International Mining Forum, 1-7. https://doi.org/10.1201/NOE0415436700.ch1
  55. Matayev, A., Abdiev, A., Kydrashov, A., Musin, A., Khvatina, N., & Kaumetova, D. (2021). Research into technology of fastening the mine workings in the conditions of unstable masses. Mining of Mineral Deposits, 15(3), 78-86. https://doi.org/10.33271/mining15.03.078
  56. Petlovanyi, M., Medianyk, V., Sai, K., Malashkevych, D., & Popovych, V. (2021). Geomechanical substantiation of the parameters for coal auger mining in the protecting pillars of mine workings during thin seams development. ARPN Journal of Engineering and Applied Sciences, 16(15), 1572-1582.
  57. Kamiński, P., Dyczko, A., & Prostański, D. (2021). Virtual simulations of a new construction of the artificial shaft bottom (shaft safety platform) for use in mine shafts. Energies, 14(8), 2110. https://doi.org/10.3390/en14082110
  58. Arystan, I.D., Baizbaev, M.B., Mataev, A.K., Abdieva L.M., Bogzhanova, Zh.K., & Abdrashev, R.M. (2020). Selection and justification of technology for fixing preparatory workings in unstable massifs on the example of the mine 10 years of independence of Kazakhstan. Ugol, (6), 10-14. https://doi.org/10.18796/0041-5790-2020-6-10-14
  59. Bondarenko, V.I., Kovalevska, I.A., Biletskyi, V.S., & Desna, N.A. (2022). Optimization principles implementation in the innovative technologies for re-used extraction workings maintenance. Petroleum and Coal, 64(2), 424-435. https://doi.org/10.1016/j.tust.2021.104182
  60. Savostianov, A.V., & Klochkov, V.G. (1992). Upravlenie sostoyaniem massiva gornykh porod. Kiev, Ukraina: UMK VO, 275 s.
  61. Лицензия Creative Commons