Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Methodology enhancement for determining parameters of room systems when mining uranium ore in the SE “SkhidGZK” underground mines, Ukraine

Mykola Stupnik1, Vsevolod Kalinichenko1, Mykhaylo Fedko2, Serhii Pysmennyi1, Olena Kalinichenko1, Alexey Pochtarev1

1Kryvyi Rih National University, Kryvyi Rih, Ukraine

2LAMET s.r.o., Kosice, Slovakia


Min. miner. depos. 2022, 16(2):33-41


https://doi.org/10.33271/mining16.02.033

Full text (PDF)


      ABSTRACT

      Purpose. The present paper aims to enhance methodology for determining the safety and stability parameters of room mining systems with backfilling of the mined-out area when mining uranium ores in underground mines of the State Enterprise “Skhidnyi Mining and Beneficiation Plant” (SE “SkhidGZK”).

      Methods. The analytical research method used in the presented paper includes the analysis of previous relevant instructions and reports on the research performed at the SE “SkhidGZK”, as well as publications on the subject, operational geological survey documentation containing monitoring data on the stress-strain state of the rock mass surrounding the formed cavities and the actual state of the mined-out blocks in all underground mines of SE “SkhidGZK”.

      Findings. The research performed enables development of a new instruction for determining the safety and stability parameters of the room systems with backfilling when mining uranium ores in the SE “SkhidGZK” underground mines. Based on the developed new instruction, the stability of outcrops in mined-out rooms has been calculated, considering the actual time of their life. The obtained parameters fully correspond to actual stability of rooms in blocks of all underground mines. This indicates that the new instruction is more advanced as compared to the current Instruction and its implementation will contribute to mine safety enhancement.

      Originality. The increased depth of mining uranium ore in the SE “SkhidGZK” underground mines and the increase in lifetime of mined-out rooms require regular adjustment of the methodology for determining their safety and stability parameters. Based on the accumulated production experience, the observations conducted and a thorough analysis of the actual state of cavities, new and adjusted current dependences have been obtained that more accurately consider the impact of both determined factors and those unprovisioned in the current Instruction for determining the safety and stability parameters of rooms.

      Practical implications. The advanced methodology for determining the safety and stability parameters of room systems in comparison with the methodology described in the current Instruction at the “SkhidGZK” underground mines provides higher accuracy when determining the design parameters of rooms in the stoping blocks and greater reliability of predictive stability of both individual outcrops and rooms in general.

      Keywords: uranium ores, room mining system with backfilling, geometrical parameters, stability, safety


      REFERENCES

  1. Voitsekhovitch, O., Soroka, Y., & Lavrova, T. (2006). Uranium mining and ore processing in Ukraine-radioecological effects on the Dnipro River water ecosystem and human health. Radioactivity in the Environment, (8), 206-214. https://doi.org/10.1016/S1569-4860(05)08014-9
  2. Lyaschenko, V., Stus, V., & Lisova, T. (2018). Improvement of environmental safety of population in uranium-mining regions Ukraine. Metallurgical and Mining Industry, 38-42.
  3. Bondarenko, V., Kovalevs’ka, I., & Ganushevych, K. (2014). Progressive technologies of coal, coalbed methane, and ores mining. London, United Kingdom: CRC Press, Taylor & Francis Group, 523 p. https://doi.org/10.1201/b17547
  4. Levine, R.M., Brininstool, M., & Wallace, G.J. (2007). The mineral industry of Ukraine. Minerals Yearbook, (3), 46.
  5. Pravyla bezpeky pid chas rozrobky rodovyshch rudnykh ta nerudnykh korysnykh kopalyn pidzemnym sposobom. (2016). Kyiv, Ukraina: Normatyv, 178 s.
  6. Instruktsiya po obosnovaniyu bezopasnykh i ustoichivykh parametrov ochistnykh blokov na shakhtakh GP “VosTGOK”. (2014). Zheltye Vody, Ukraina: GP “UkRNIPIIpromtekhnologii”, 67 s.
  7. Pysmennyi, S., Fedko, M., Chukharev, S., Rysbekov, K., Kyelgyenbai, K., & Anastasov, D. (2022). Technology for mining of complex-structured bodies of stable and unstable ores. IOP Conference Series: Earth and Environmental Science, 970(1), 012040. https://doi.org/10.1088/1755-1315/970/1/012040
  8. Kobylkin, D., Zachko, O., Popovych, V., Burak N., Golovatyi, R., & Carsten, W. Models for changes management in infrastructure projects. CEUR Workshop Proceedings, (2565), 106-115.
  9. Instruktsiya po obosnovaniyu bezopasnykh i ustoichivykh parametrov ochistnykh blokov na shakhtakh GP “VosTGOK”. (2005). Zheltye Vody, Ukraina: GP “UkRNIPIIpromtekhnologii”, 44 s.
  10. Instruktsiya po opredeleniyu parametrov obnazheniy gornykh porod i raspolozheniya vyrabotok pri kamernykh sistemakh razrabotki s tverdeyushchey zakladkoy na rudnikakh predpriyatiy. (1986). R-6449. Moskva, Rossiya: Nedra, 28 s.
  11. Petlovanyi, M., Lozynskyi, V., Zubko, S., Saik, P., & Sai, K. (2019). The infuence of geology and ore deposit occurrence conditions on dilution indicators of extracted reserves. Rudarsko Geolosko Naftni Zbornik, 34(1), 83-91. https://doi.org/10.17794/rgn.2019.1.8
  12. Bazaluk, O., Petlovanyi, M., Lozynskyi, V., Zubko, S., Sai, K., & Saik, P. (2021). Sustainable underground iron ore mining in Ukraine with backfilling worked-out area. Sustainability, 13(2), 834. https://doi.org/10.3390/su13020834
  13. Bazaluk, O., Petlovanyi, M., Zubko, S., Lozynskyi, V., & Sai, K. (2021). Instability assessment of hanging wall rocks during underground mining of iron ores. Minerals, 11(8), 858. https://doi.org10.3390/min11080858
  14. Khomenko, O., Kononenko, M., & Petlyovanyy, M. (2014). Investigation of stress-strain state of rock massif around the secondary chambers. Progressive Technologies of Coal, Coalbed Methane, And Ores Mining, 241-245. https://doi.org/10.1201/b17547-43
  15. Pysmenniy, S., Shvager, N., Shepel, O., Kovbyk, K., & Dolgikh, O. (2020). Development of resource-saving technology when mining ore bodies by blocks under rock pressure. E3S Web of Conferences, (166), 02006. https://doi.org/10.1051/e3sconf/202016602006
  16. Kononenko, M., & Khomenko, O. (2010). Technology of support of workings near to extraction chambers. New Techniques and Technologies in Mining, 193-197. https://doi.org/10.1201/b11329-32
  17. Khomenko, O., Kononenko, M., & Myronova, I. (2013). Blasting works technology to decrease an emission of harmful matters into the mine atmosphere. Annual Scientific-Technical Collection – Mining of Mineral Deposits 2013, 231-236. https://doi.org/10.1201/b16354-42
  18. Kuandykov, T., Nauryzbayeva, D., Yelemessov, K, Karmanov, T., Kakimov, U., & Kolga, A. (2020). Development and justification of a hydro-impulse method for increasing ore permeability in conditions of uranium borehole production. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 6(444), 126-133. https://doi.org/10.32014/2020.2518-170X.139
  19. Aben, E., Toktaruly, B., Khairullayev, N., & Yeluzakh, M. (2021). Analyzing changes in a leach solution oxygenation in the process of uranium ore borehole mining. Mining of Mineral Deposits, 15(3), 39-44. https://doi.org/10.33271/mining15.03.039
  20. Yulusov, S., Surkova, T.Y., Amanzholova, L.U., & Barmenshinova, M.B. (2018). On sorption of the rare-earth elements. Journal of Chemical Technology and Metallurgy, 53(1), 79-82.
  21. Matayev, A.K., Musin, A., Abdrashev, R.M., Kuantay, A.S., & Kuandykova, A.N. (2021). Substantiating the optimal type of mine working fastening based on mathematical modeling of the stress condition of underground structures. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (3), 57-63. https://doi.org/10.33271/nvngu/2021-3/057
  22. Arystan, I.D., Nemova, N.A., Baizbaev, M.B., & Mataev, A.K. (2021). Efficiency of modified concrete in lining in underground structures. IOP Conference Series: Earth and Environmental Science, 773(1), 012063. https://doi.org/10.1088/1755-1315/773/1/012063
  23. Kalybekov, T., Rysbekov, K., Nаuryzbayeva, D., Toktarov, A., & Zhakypbek, Y. (2020). Substantiation of averaging the content of mined ores with account of their readiness for mining. E3S Web of Conferences, (201), 01039. https://doi.org/10.1051/e3sconf/202020101039
  24. Malanchuk, Z., Moshynskyi, V., Stets, S., Ignatiuk, I., & Galiyev, D. (2020). Modelling hydraulic mixture movement along the extraction chamber bottom in case of hydraulic washout of the puff-stone. E3S Web of Conference, (201), 01011. https://doi.org/10.1051/e3sconf/202020101011
  25. Baimukhanbetova, E., Onaltayev, D., Daumova, G., Amralinova, B., & Amangeldiyev, A. (2020). Improvement of informational technologies in ecology. E3S Web of Conferences, (159), 01008. https://doi.org/10.1051/e3sconf/202015901008
  26. Matayev, A., Abdiev, A., Kydrashov, A., Musin, A., Khvatina, N., & Kaumetova, D. (2021). Research into technology of fastening the mine workings in the conditions of unstable masses. Mining of Mineral Deposits, 15(3), 78-86. https://doi.org/10.33271/mining15.03.078
  27. Morkun, V., Morkun, N., & Tron, V. (2015). Identification of control systems for ore-processing industry aggregates based on nonparametric kernel estimators. Metallurgical and Mining Industry, 7(1), 14-17.
  28. Morkun, V., & Tron, V. (2014). Automation of iron ore raw materials beneficiation with the operational recognition of its varieties in process streams. Metallurgical and Mining Industry, 6(6), 4-7.
  29. Morkun, V., Morkun, N., & Pikilnyak, A. (2014). The adaptive control for intensity of ultrasonic influence on iron ore pulp. Metallurgical and Mining Industry, 6(6), 8-11.
  30. Morkun, V., Morkun, N., & Pikilnyak, A. (2014). Modeling of ultrasonic waves propagation in inhomogeneous medium using fibered spaces method (k-space). Metallurgical and Mining Industry, 6(2), 43-48.
  31. Lyashenko, V.I. (2005). Development of methods for managing the ore resources during underground mining of deposits with complicated structure. Gornyi Zhurnal, (6), 43-46.
  32. Puhal’skij, V.N. (2012). Obespechenie ustoychivosti konstruktivnykh ehlementov kamernoy sistemy razrabotki uranovykh mestorozhdeniy pod okhranyaemymi ob’’ktami. Dissertaciya. Krivoy Rog, Ukraina: KNU, 136 s.
  33. Khomenko, O., & Maltsev, D. (2013). Laboratory research of influence of face area dimensions on the state of uranium ore layers being broken. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 31-37.
  34. Stupnik, M.I., Kalinichenkо, V.O., Fedko, M.B., & Kalinichenko, О.V. (2018). Investigation into crown stability at underground leaching of uranium ore. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 20-25. https://doi.org/10.29202/nvngu/20186/5
  35. Stupnik, N.I., Kalinichenko, V.A., Fedko, M.B., & Mirchenko, Ye.G. (2013). Prospects of application of TNT-free explosives in ore deposits developed by underground mining. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (1), 44-48.
  36. Stupnik, N., & Kalinichenko, V. (2012). Parameters of shear zone and methods of their conditions control at underground mining of steep-dipping iron ore deposits in Kryvyi Rig basin. Geomechanical Processes During Underground Mining – Proceedings of the School of Underground Mining, 15-17. https://doi.org/10.1201/b13157-4
  37. Khomenko, О., Sudakov, А., Malanchuk, Z., & Malanchuk, Ye. (2017). Principles of rock pressure energy usage during underground mining of deposits. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 35-43.
  38. Pysmennyi, S., Fedko, M., Shvaher, N., & Chukharev, S. (2020). Mining of rich iron ore deposits of complex structure under the conditions of rock pressure development. E3S Web of Conferences, (201), 01022. https://doi.org/10.1051/e3sconf/202020101022
  39. Stupnik, N.I., Kalinichenko, V.A., Fedko, M.B., & Mirchenko, Ye.G. (2013). Influence of rock massif stress-strain state on uranium ore breaking technology. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 11-16.
  40. Lyashenko, V.I., Savel’ev, Yu.Ya., & Tkachenko, A.A. (2006). Nauchno-tekhnicheskie osnovy seysmobezopasnoy tekhnologii podzemnoy razrabotki uranovykh mestorozhdeniy. Metallurgicheskaya i Gornorudnaya Promyshlennost’, (6), 107-111.
  41. Lyashenko, V.I. (2014). Ecological safety of uranium production in Ukraine. Gornyi Zhurnal, (4), 113-116.
  42. Lyashenko, V.I. (2005). Environment and resource saving methods of inventory control of uranium mines and deposits. Metallurgicheskaya i Gornorudnaya Promyshlennost’, (1), 122-127.
  43. Vyznachennia ta kontrol dopustymykh rozmiriv konstruktyvnykh elementiv system rozrobky zaliznykh rud. (2010). Instruktsiia po zastosuvanniu. Kryvyi Rih, Ukraina: Rotaprynt DP “NDHRI”, 122 s.
  44. Kucher, V.M. (1977). Zavisimost’ ustoychivosti obnazheniy ot formy, razmerov i usloviy zashchemleniya po konturu. Razrabotka Rudnykh Mestorozhdeniy, (24), 26-30.
  45. Morkun, V., Morkun, N., & Tron, V. (2015). Model synthesis of nonlinear nonstationary dynamical systems in concentrating production using Volterra kernel transformation. Metallurgical and Mining Industry, 7(10), 6-9.
  46. Morkun, V., Morkun, N., & Pikilnyak, A. (2014). The gas bubble size distribution control formation in the flotation process. Metallurgical and Mining Industry, 6(4), 42-45.
  47. Kaplenko, Yu.P., & Tsarikovskiy, V.V. (2005). Vliyanie napryazhennogo sostoyaniya gornogo massiva i gorno-geologicheskikh usloviy na parametry obnazheniy i formu ochistnykh kamer. Razrabotka Rudnykh Mestorozhdeniy, (88), 11-24.
  48. Tsarykovskyi, V.V. (2010). Pidvyshchennia efektyvnosti kamernykh system rozrobky pry vydobutku rud na shakhtakh Kryvbasu. Avtoreferat dysertatsii. Kryvyi Rih, Ukraina: KTU, 20 s.
  49. Stupnik, M., & Kalinichenko, V. (2013). Magnetite quartzite mining is the future of Kryvyi Rig iron ore basin. Annual Scientific-Technical Collection – Mining of Mineral Deposits 2013, 49-52. https://doi.org/10.1201/b16354-10
  50. Kononenko, M., & Khomenko, O. (2010). Technology of support of workings near to extraction chambers. New Techniques and Technologies in Mining, 193-197. https://doi.org/10.1201/b11329-32
  51. Zhanchiv, B., Rudakov, D., Khomenko, O., & Tsendzhav, L. (2013). Substantiation of mining parameters of Mongolia uranium deposits. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 10-18.
  52. Chystiakov, Ye.P., Chystiakov, D.Ye., Fedorenko, O.I., & Moshynskyi, V.I. (2012). Instruktsiia iz vyznachennia stiikosti hirskykh porid pry prokhodzhenni hirnychykh vyrobok v umovakh uranovykh rodovyshch, shcho rozrobliaiutsia DP “SkhidHZK”. Kryvyi Rih, Ukraina: NDHRI DVNZ “KNU”, 28 s.
  53. Лицензия Creative Commons