Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Stress-strain state index of the Imex quarry rock mass, Bioko Island, Equatorial Guinea

Alfonso Alogo Nguema1, Isnel Rodríguez González1, Maday Cartaya Pire1

1University of Moa, Moa, Cuba


Min. miner. depos. 2022, 16(2):22-26


https://doi.org/10.33271/mining16.02.022

Full text (PDF)


      ABSTRACT

      Purpose. The purpose of this research is to determine the index of the rock mass stress-strain state in the Imex quarry, Bioko Island, Equatorial Guinea.

      Methods. To determine the number of required samples by the method of stratified random sampling, the t-Student principle is used. The physical-mechanical properties of rocks have been determined by tests and methods of saturation, pycnometry, hydrostatic weighing, axial loads and clock-type indicators. The classification of the degree of weathering has been carried out to assess its impact on the physical-mechanical properties of rocks and rock mass on the basis of direct observation in different areas of the studied rock mass. To determine the rock mass stress-strain state, the Hoek-Brown failure criterion is used, including laboratory tests to determine the models, dimensions and shapes of ruptures.

      Findings. Significant changes in rocks, high values of stress and weathering, which generate distributions of new forces in the rock mass and originate instability and large deformations, as well as a high porosity index, average values of compressive strength and a high value of elasticity modulus, have been revealed. Significant differences in the degree of weathering in the prevailing zones, from insignificant values of weathering in the northern areas to moderate values of weathering in the south, have been confirmed.

      Originality. Information is presented on the physical-mechanical properties, the degree of weathering and the stress-strain state index of the rock mass in the Imex quarry, Bioko Island, Equatorial Guinea.

      Practical implications. Knowledge about the rock quality, management and implementation of technological processes during operation can be used as a useful material for the construction industry.

      Keywords: rock mass, weathering, stress, instability, deformation


      REFERENCES

  1. Carranza, E., & Poma, L. (2020). Estabilidad de Taludes del Tajo Abierto Jésica considerando el Macizo Rocoso Isotrópico y Anisotrópico. Revista del Instituto de Investigación de la Facultad de Ingeniería Geológica, Minera, Metalúrgica y Geográfica, (23), 37-43. https://doi.org/10.15381/iigeo.v23i46.17331
  2. Zhang, L. (2005). Engineering properties of rocks. Volume 4. London, United Kingdom: Elsevier Geo-Engineering book series, 290 p.
  3. Perri, G. (2016). Contribución a la caracterización geomecánica de los macizos rocosos en base al GSI de Hoek, 18 p.
  4. Barton, N., & Bandis, S. (2017). Characterization and modelling of the shear strength, stiffness and hydraulic behaviour of rock joints for engineering purposes. Rock Mechanics and Engineering, 1(1), 3-40.
  5. Lamas, L. (2017). International Society for Rock Mechanics – ISRM. Techniques in Dentistry and Oral & Maxillofacial Surgery, 1-2.https://doi.org/10.1007/978-3-319-12127-7_173-1
  6. Martínez, R. (2011). La estabilidad del macizo geológico. Pinar del Río, Cuba: Universidad de Pinar del Río, 86 p.
  7. Barton, N.R. (2022). To be or not to be – continuum or discontinuum – that is the question. M-C, H-B, GSI-based Phase-2 modelling questioned.https://doi.org/10.13140/RG.2.2.34585.90723
  8. Hoek, E., Carranza, C., & Corkum, B. (2002). El criterio de rotura de Hoek-Brown – Edición 2002 Hoek-Brown failure criterion – 2002 Edition, 8 p.
  9. Zhang, L. (2016). Engineering properties of rocks. Oxford, United Kingdom: Butterworth-Heinemann, 394 p.
  10. Molerio, L. (2014). Marco geológico del peligro, la vulnerabilidad y los riesgos naturales en Guinea Ecuatorial. Medio Ambiente y Desarrollo; Revista electrónica de la Agencia de Medio Ambiente, 14(26), 1-8.
  11. Costafreda, J., Domingo, M., Martín-Sánchez, D., Carlos, S., Rodríguez, A., Costafreda, J., & Estudio, D. (2020). Introducción al estudio de las rocas y minerales industriales de la Isla de Bioko, República de Guinea Ecuatorial. Madrid, Spain: Fundación Gómez Pardo, 180 p.
  12. McKie, H. (2009). Volcanic activity – lake Nyos. Stage 1, Geology A, (6), 1-6.
  13. Campos-Serrano, A. (2018). La isla de Bioko en el mundo atlántico: dinámicas de enclave y órdenes transfronterizos. Vegueta. Colonial and Decolonization History, (18), 303-325.
  14. Calero, A. (2003). Estadísticas III. Habana, Cuba: Editorial Félix Valera, 61 p.
  15. Chacín, F. (2000). Diseño y análisis de experimentos. Caracas, Venezuela: FEPUVA-UCV, 686 p.
  16. ISRM. (1981). Suggested methods: rock characterization, testing and monitoring. London, United Kingdom: Pergamon, 211 p.
  17. Hoek, E., & Brown, E.T. (1980). Empirical strength criterion for rock masses. Journal of the Geotechnical Engineering Division, 106(9), 1013-1035.https://doi.org/10.1061/ajgeb6.0001029
  18. Abbot, J. (2016). Mineral resource estimation for the Gadde Bissik Phosphate Deposit, Republic of Senegal. Technical report. West Perth, Australia: MPR Geological Consultants Pty Ltd, 65 p.
  19. Barton, N. (2020). Unconventional exploration of failure modes in rock and rock masses. Trondheim, Norway: Eurock2020, 14 p.
  20. Carranza-Torres, C. (2021). Computational tools for the analysis of circular failure of rock slopes. IOP Conference Series: Earth and Environmental Science, 833(1), 012003.https://doi.org/10.1088/1755-1315/833/1/012003
  21. Oluwaseyi, A. (2017). Criterios para la evaluacion del comportamiento mecanico-estructural del macizo rocoso con el empleo de la modelacion numerica. Moa, Cuba: ISMMM, 11 p.
  22. Лицензия Creative Commons