Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Ore-controlling factors as the basis for singling out the prospective areas within the Syrymbet rare-metal deposit, Northern Kazakhstan

Lyudmila Issayeva1, Kuanysh Togizov1, Agata Duczmal-Czernikiewicz2, Madina Kurmangazhina1, Daulet Muratkhanov2

1Satbayev University, Almaty, Kazakhstan

2Adam Mickiewicz University, Poznań, Poland


Min. miner. depos. 2022, 16(2):14-21


https://doi.org/10.33271/mining16.02.014

Full text (PDF)


      ABSTRACT

      Purpose is prediction of the prospective areas within the Syrymbet deposit basing on the systematization and complementing of the ore-controlling factors of ore localization and predictive-prospecting criteria.

      Methods. The methodology of carrying out the research in terms of the indicated problem involves complex application of empiric, theoretical, and logical techniques of a general-purpose method of scientific knowledge. To model the ore bodies and distribution of ore content in them in the 3D format, the computer modelling (GIS-Micromine) methods were used; 2D modelling of a temperature field of the ore-bearing Syrymbet mass involved methods of mathematical modelling (Maple 10). The main conclusions were drawn by means of analysis and synthesis of the results obtained by the indicated methods.

      Findings.. The ore-controlling factors of the localization of rare metal ores were systematized and complemented by synthesizing the results of the analysis of 3D models of the deposit under consideration with the visualization of ore component contents within the ore bodies and their 2D sections in terms of the survey profiles where spatial distribution of tin content in the vertical section of this deposit was obtained. The factors were also updated by analyzing the thermodynamic conditions of the formation of ore stockworks where temperature conditions of the enclosing media in the area of ore formation were considered along with the intervals of the ore deposition temperatures.

      Originality. The results of scientific studies (computer and mathematical modelling) based on the empiric geological data helped solve not only the problems of ore formation theory but also the practical tasks concerning the improvement of methods for predicting the prospective areas within the deposit.

      Practical implications. The methodology of scientific study dealing with systematization of ore-controlling factors can be also used for other endogenous ore objects.

      Keywords: deposit, rare metals, 3D deposit models, content of ore components, ore-controlling factors, thermodynamic conditions, temperature fields


      REFERENCES

  1. Simandl, G.J. (2014). Geology and market-dependent significance of rare earth element resources. Mineralium Deposita, (49), 889-904. https://doi.org/10.1007/s00126-014-0546-z
  2. Gunn, G. (2013). Critical metals handbook. Hoboken, United States: John Wiley & Sons, 440 p. https://doi.org/10.1002/9781118755341
  3. Togizov K., Antonenko A. (2020), The structural tectonic position and predictive search criteria for the lead-zinc karst mineralisation (South Kazakhstan). In 20th International Multidisciplinary Scientific Geoconference SGEM, (20), 335-340. https://doi.org/10.5593/sgem2020/1.1/s01.042
  4. Sheard, E.R., Williams-Jones, A.E., Heiligmann, M., Pederson, C., & Trueman, D.L. (2012). Controls on the concentration of zirconium, niobium, and the rare earth elements in the Thor Lake Rare Metal Deposit, Northwest Territories, Canada. Economic Geology, 107(1), 81-104. https://doi.org/10.2113/econgeo.107.1.81
  5. Yuan, S., Williams-Jones, A.E., Romer, R.L., Zhao, P., & Mao, J. (2019). Protolith-related thermal controls on the decoupling of Sn and W in Sn-W Metallogenic Provinces: Insights from the Nanling Region, China. Economic Geology, 114(5), 1005-1012. https://doi.org/10.5382/econgeo.4669
  6. Yang, J.-H., Zhou, M.-F., Hu, R.-Z., Zhong, H., Williams-Jones, A.E., Liu, L., Zhang, X.-C., Fu, Y.-Z., & Mao, W. (2020). Granite-related tin metallogenic events and key controlling factors in Peninsular Malaysia, Southeast Asia: New insights from cassiterite U-Pb dating and zircon geochemistry. Economic Geology, 115(3), 581-601. https://doi.org/10.5382/econgeo.4736
  7. Schetselaar, E., Pehrsson, S., Devine, C., Lafrance, B., White, D., & Malinowski, M. (2016). 3-D geologic modeling in the Flin Flon mining district, Trans-Hudson Orogen, Canada: Evidence for polyphase imbrication of the Flin Flon-777-Callinan volcanogenic massive sulfide ore system. Economic Geology, 111(4), 877-901. https://doi.org/10.2113/econgeo.111.4.877
  8. Mars, J.C. (2018). Mineral and lithologic mapping capability of WorldView 3 Data at Mountain Pass, California, using true- and false-color composite images, band ratios, and logical operator algorithms. Economic Geology, 113(7), 1587-1601. https://doi.org/10.5382/econgeo.2018.4604
  9. Zhang, Y., Ma, D., & Gao, J.-F. (2020). Origin and evolution of ore-forming fluids in a tungsten mineralization system, Middle Jiangnan orogenic belt, South China: Constraints from in-situ LA-ICP-MS analyses of scheelite. Ore Geology Reviews, (127), 103806. https://doi.org/10.1016/j.oregeorev.2020.103806
  10. Pandur, K., Ansdell, K.M., Kontak, D.J., Halpin, K.M., & Creighton, S. (2016). Petrographic and mineral chemical characteristics of the Hoidas Lake Deposit, Northern Saskatchewan, Canada: Constraints on the origin of a distal magmatic-hydrothermal REE system. Economic Geology, 111(3), 667-694. https://doi.org/10.2113/econgeo.111.3.667
  11. Wu, M., Samson, I.M., & Zhang, D. (2017). Textural and chemical constraints on the formation of disseminated granite-hosted W-Ta-Nb mineralization at the Dajishan Deposit, Nanling Range, Southeastern China. Economic Geology, 112(4), 855-887. https://doi.org/10.2113/econgeo.112.4.855
  12. Baimukhanbetova, E., Onaltayev, D., Daumova, G., Amralinova, B., & Amangeldiyev, A. (2020). Improvement of informational technologies in ecology. E3S Web of Conferences, (159), 01008. https://doi.org/10.1051/e3sconf/202015901008
  13. Slack, J.F., Neymark, L.A., Moscati, R.J., Lowers, H.A., Ransom, P.W., Hauser, R.L., & Adams, D.T. (2020). Origin of tin mineralization in the Sullivan Pb-Zn-Ag Deposit, British Columbia: Constraints from textures, geochemistry, and LA-ICP-MS U-Pb geochronology of cassiterite. Economic Geology, 115(8), 1699-1724. https://doi.org/10.5382/econgeo.4761
  14. Uteshov, Y., Galiyev, D., Galiyev, S., Rysbekov, K., & Nаuryzbayeva, D. (2021). Potential for increasing the efficiency of design processes for mining the solid mineral deposits based on digitalization and advanced analytics. Mining of Mineral Deposits, 15(2), 102-110. https://doi.org/10.33271/mining15.02.102
  15. Zorin, Yu.M. (2006). Syrymbetskoye mestorozhdenie olova v Kokshetauskoy oblasti Respubliki Kazakhstan. Otchet o rezultatakh detalnoy razvedki olovonosnykh kor vyvetrivaniya i predvaritelnoy razvedki pervichnykh rud s podschetom zapasov po sostoyaniyu na 1 oktyabrya 2006 goda. Kniga 1 i 2, 238 s.
  16. Kyne, R., Torremans, K., Güven, J., Doyle, R., & Walsh, J. (2019). 3-D modeling of the Lisheen and Silvermines Deposits, County Tipperary, Ireland: Insights into structural controls on the formation of Irish Zn-Pb Deposits. Economic Geology, 114(1), 93-116. https://doi.org/10.5382/econgeo.2019.4621
  17. Joly, A. (2015). Mineral systems approach applied to GIS-based 2D-prospectivity modelling of geological regions: Insights from Western Australia. Ore Geology Reviews, (71), 673-702. https://doi.org/10.1016/j.oregeorev.2015.06.007
  18. Telkov, Sh.A., Motovilov, I.Tu., Barmenshinova, M.B., & Abisheva, Z.S. (2021). Study of gravity-flotation concentration of lead-zinc ore at the Shalkiya deposit. Obogashchenie Rud, (6), 9-15.
  19. Perring, C.S. (2015). A 3-D geological and structural synthesis of the Leinster Area of the Agnew-Wiluna Belt, Yilgarn Craton, Western Australia, with special reference to the volcanological setting of Komatiite-Associated Nickel Sulfide Deposits. Economic Geology, 110(2), 469-503. https://doi.org/10.2113/econgeo.110.2.469
  20. Omirserikov, M.S., Duczmal-Czernikiewicz, A., Isaeva, L.D., Asubaeva, S.K., & Togizov, K.S. (2017). Forecasting resources of rare metal deposits based on the analysis of ore-controlling factors. News of the NAS RK. Series of Geology and Technical Sciences, 3(423), 35-43.
  21. Togizov, K.S., Zholtayev, G.Z., & Isaeva, L.D. (2019). The role of three-dimensional models of the deposit and thermodynamic conditions of its formation at selecting and evaluating resources of prospective sites. News of the NAS RK. Series of Geology and Technical Sciences, 5(437), 169-176. https://doi.org/10.32014/2019.2518-170X.139
  22. Issayeva, L.D., Asubaeva, S.K., Togizov, K.S., & Kembayev, M.K. (2019). The formation of a geoinformation system and creation of a digital model of Syrymbet rare-metal deposit (North Kazakhstan). Science and Technologies in Geology, Exploration and Mining, 609-616. https://doi.org/10.5593/sgem2019/1.1/S01.075
  23. Shang, L., Williams-Jones, A.E., Wang, X., Timofeev, A., Hu, R., & Bi, X. (2020). An experimental study of the solubility and speciation of MoO3(s) in hydrothermal fluids at temperatures up to 350°C. Economic Geology, 115(3), 661-669. https://doi.org/10.5382/econgeo.4715
  24. Wolff, R., Dunkl, I., Kempe, U., & von Eynatten, H. (2015). The age of the latest thermal overprint of tin and polymetallic deposits in the Erzgebirge, Germany: Constraints from fluorite (U-Th-Sm)/He thermochronology. Economic Geology, 110(8), 2025-2040. https://doi.org/10.2113/econgeo.110.8.2025
  25. Yuan, S., Williams-Jones, A.E., Mao, J., Zhao, P., Yan, C., & Zhang, D. (2018). The origin of the Zhangjialong tungsten deposit, South China: Implications for W-Sn mineralization in large granite batholiths. Economic Geology, 113(5), 1193-1208. https://doi.org/10.5382/econgeo.2018.4587
  26. Xiong, Y.-Q., Shao, Y.-J., Cheng, Y., & Jiang, S.-Y. (2020). Discrete jurassic and cretaceous mineralization events at the Xiangdong W(-Sn) Deposit, Nanling Range, South China. Economic Geology, 115(2), 385-413. https://doi.org/10.5382/econgeo.4704
  27. Dyakonov, V.P. (2011). Maple 10/11/12/13/14 v matematicheskikh raschetakh. Moskva, Rossiya: DMK Press, 800 s.
  28. Antonenko A., Togizov K., Khodzhimuratova A. (2020), Local criteria in search for karst mineralization in the Achisai ore district (South Kazakhstan). In 20th International Multidisciplinary Scientific Geoconference, (20), 147-153.https://doi.org/10.5593/sgem2020/1.1/s01.019
  29. Snachyov, V.I., & Rykus, M.V. (2015). Teplovoy rezhim stanovleniya granitoidov severnoy chasti Vostochno-Uralskogo progiba (Yuzhnyy Ural). Neftegazovoe Delo, (1), 12-18.
  30. Krivtsov, A.I. (2005). Metodicheskoe rukovodstvo po otsenke prognoznykh resursov tverdykh poleznykh iskopaemykh. Vypusk I. Printsipy i metody otsenki. Sankt-Peterburg, Rossiya: VSEGEI.
  31. Mestorozhdeniya redkikh metallov i redkikh zemel Kazakhstana. (2015). Spravochnik. Almaty, Kazakhstan, 270 s.
  32. Dyachkov, B.A., Aitbayeva, S.S., Mizernaya, M.A., Amralinova, B.B., & Bissatova, A.E. (2020). New data on non-traditional types of East Kazakhstan rare metal ore. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 11-16. https://doi.org/10.33271/nvngu/2020-4/011
  33. Duczmal-Czernikiewicz, A. (2012). Rare earth elements in selected clay deposits of the Polish Lowlands (Neogene). Biuletyn Państwowego Instytutu Geologicznego, 448(2), 419-430.
  34. Togizov, K., Muratkhanov, D., & Aksholakov, Y. (2020). Rare-earth element concentration conditions in the rare-metal deposits of the Karakamys ore district. Science and Technologies in Geology, Exploration and Mining, 271-278.https://doi.org/10.5593/sgem2020/1.1/s01.034
  35. Лицензия Creative Commons