Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Substantiation of mining systems for steeply dipping low-thickness ore bodies with controlled continuous stope extraction

Kanay Rysbekov1, Marat Bitimbayev2, Dalelkhan Akhmetkanov1, Kassym Yelemessov1, Madina Barmenshinova1, Ayan Toktarov1, Dinara Baskanbayeva1

1Satbayev University, Almaty, Kazakhstan

2National Engineering Academy of Kazakhstan, Almaty, Kazakhstan

Min. miner. depos. 2022, 16(2):64-72

Full text (PDF)


      Purpose. The solution to one of the important problems of the underground mining method is to substantiate cost-effective, technologically feasible and safe variants for mining steeply dipping low-thickness ore bodies.

      Methods. Mining systems are substantiated on the basis of a detailed analysis of the developed and existing experiential variants for mining steeply dipping ore bodies, identifying production and economic disadvantages, as well as their causes.

      Findings.As a result of the research, the pillar raise performance in the mining system with ore shrinkage has been substantiated. The main parameters of the proposed variants for mining systems with ore shrinkage, intended for expansion-type supports and borehole breaking, have been substantiated. A design has been developed of fastening the material-running raises (MRR) and ventilating raises (VR) on the working and ventilation horizons to ensure their performance in the mining system with ore shrinkage.

      Originality. For the first time, dependences of dilution and labour productivity on the ore body thickness and the type of ore breaking for blast-hole stoping and borehole breaking for a single and “twinned block” have been obtained. In addition, a certain dependence of the loading and delivery performance on the average fractional composition, as well as on the delivery distance, has been obtained.

      Practical implications. The research is characterized by scientific innovations created for the first time, which are able to ensure the efficiency and safety of mining operations, while creating the ability to manage the loss of minerals and dilution in the block, as well as reaching their calculated optimal ratio in order to achieve the most cost-effective production rate.

      Keywords: ore, ore body, production, mining operations, mining practice, stope extraction


  1. Bitimbaev, M.Zh., & Edygenov, E.K. (2001). Scientific and technological developments of the institute in the field of mining matter. Gornyi Zhurnal, (11), 86-89.
  2. Pivnyak, G., Bondarenko, V., & Kovalevska, I. (2015). New developments in mining engineering 2015: Theoretical and practical solutions of mineral resources mining. London, United Kingdom: CRC Press, Taylor & Francis Group, 607 p.
  3. Kicki, J., & Dyczko, A. (2010). The concept of automation and monitoring of the production process in an underground mine. New Techniques and Technologies in Mining, 245-253.
  4. Uteshov, Y., Galiyev, D., Galiyev, S., Rysbekov, K., & Nаuryzbayeva, D. (2021). Potential for increasing the efficiency of design processes for mining the solid mineral deposits based on digitalization and advanced analytics. Mining of Mineral Deposits, 15(2), 102-110.
  5. Maldynova, A., Osmanov, Z., & Galiyev, D. (2018). Formation of marketing strategy for promoting an innovative product. Journal of Applied Economic Sciences, 13(7), 1951-1958.
  6. Bogdanovic, D., Nikolic, D., & Ilic, I. (2012). Mining method selection by integrated AHP and PROMETHEE method. Anais Da Academia Brasileira de Ciências, 84(1), 219-233.
  7. Bazaluk, O., Rysbekov, K., Nurpeisova, M., Lozynskyi, V., Kyrgizbayeva, G., & Turumbetov, T. (2022). Integrated monitoring for the rock mass state during large-scale subsoil development. Frontiers in Environmental Science, (10), 852591.
  8. Pysmennyi, S., Fedko, M., Chukharev, S., Rysbekov, K., Kyelgyenbai, K., & Anastasov, D. (2022). Technology for mining of complex-structured bodies of stable and unstable ores. IOP Conference Series: Earth and Environmental Science, 970(1), 012040.
  9. Kamiński, P., Dyczko, A., & Prostański, D. (2021). Virtual simulations of a new construction of the artificial shaft bottom (shaft safety platform) for use in mine shafts. Energies, 14(8), 2110.
  10. Koval, V., Mikhno, I., Udovychenko, I., Gordiichuk, Y., & Kalina, I. (2021). Sustainable natural resource management to ensure strategic environmental development. TEM Journal, 1022-1030.
  11. Kalybekov, T., Rysbekov, K., Nаuryzbayeva, D., Toktarov, A., & Zhakypbek, Y. (2020). Substantiation of averaging the content of mined ores with account of their readiness for mining. E3S Web of Conferences, (201), 01039.
  12. Shmygol, N., Schiavone, F., Trokhymets, O., Pawliszczy, D., Koval, V., Zavgorodniy, R., & Vorfolomeiev, A. (2020). Model for assessing and implementing resource-efficient strategy of industry. CEUR Workshop Proceedings, (2713), 277-294.
  13. Dyachkov, B.A., Bissatova, A.Y., Mizernaya, M.A., Zimanovskaya, N.A., Oitseva, T.A., Amralinova, B.B., Aitbayeva, S.S., Kuzmina, O.N., & Orazbekova, G.B. (2021). Specific features of geotectonic development and ore potential in Southern Altai (Eastern Kazakhstan). Geology of Ore Deposits, 63(5), 383-408.
  14. Krupnik, L.A., Bitimbayev, M.Zh., Shaposhnik, S.N., Shaposhnik, Y.N., & Demin, V.F. (2015). Validation of rational backfill technology for Sekisovskoe deposit. Journal of Mining Science, 51(3), 522-528.
  15. Bazaluk, O., Petlovanyi, M., Lozynskyi, V., Zubko, S., Sai, K., & Saik, P. (2021). Sustainable underground iron ore mining in Ukraine with backfilling worked-out area. Sustainability, 13(2), 834.
  16. Zhao, X., Fourie, A., & Qi, C. (2020). Mechanics and safety issues in tailing-based backfill: A review. International Journal of Minerals, Metallurgy and Materials, 27(9), 1165-1178.
  17. Bitimbaev, M.Z., Krupnik, L.A., Aben, E.K., & Aben, K.K. (2017). Adjustment of backfill composition for mineral mining under open pit bottom. Gornyi Zhurnal, (2), 57-61.
  18. Lyashenko, V.I., & Khomenko, O.E. (2019). Enhancement of confined blasting of ore. Mining Informational and Analytical Bulletin, (11), 59-72.
  19. Khomenko, O.E., & Lyashenko, V.I. (2019). Improvement of the mine technical safety for the underground workings. Occupational Safety in Industry, (4), 43-51.
  20. Kalybekov, T., Rysbekov, K.B., Toktarov, A.A., & Otarbaev, O.M. (2019). Underground mine planning with regard to preparedness of mineral reserves. Mining Informational and Analytical Bulletin, (5), 34-43.
  21. Lozynskyi, V., Medianyk, V., Saik, P., Rysbekov, K., & Demydov, M. (2020). Multivariance solutions for designing new levels of coal mines. Rudarsko Geolosko Naftni Zbornik, 35(2), 23-32.
  22. Rysbekov, K., Toktarov, A., Kalybekov, T., Moldabayev, S., Yessezhulov, T., & Bakhmagambetova, G. (2020). Mine planning subject to prepared ore reserves rationing. E3S Web of Conference, (168), 00016.
  23. Kononenko, M., & Khomenko, O. (2010). Technology of support of workings near to extraction chambers. New Techniques and Technologies in Mining, 193-197.
  24. Bitimbaev, M.Zh. (2019). Garmonizatsiya primenimosti tsifrovogo upravleniya dlya tekhnologicheskogo obespecheniya podzemnykh gornykh rabot. Gornyy Zhurnal Kazakhstana, (10), 49-54.
  25. Pysmennyi, S., Fedko, M., Chukharev, S., Rysbekov, K., Kyelgyenbai, K., & Anastasov, D. (2022). Technology for mining of complex-structured bodies of stable and unstable ores. IOP Conference Series: Earth and Environmental Science, 970(1), 012040.
  26. Gumenik, I., & Lozhnikov, O. (2015). Current condition of damaged lands by surface mining in Ukraine and its influence on environment. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 139-143.
  27. Kalybekov, T., Rysbekov, K., & Zhakypbek, Y. (2015). Efficient land use in open-cut mining. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 287-291.
  28. Kalybekov, T., Sandibekov, M., Rysbekov, K., & Zhakypbek, Y. (2019). Substantiation of ways to reclaim the space of the previously mined-out quarries for the recreational purposes. E3S Web of Conferences, (123), 01004.
  29. Sobko, B., Haidin, A., Lozhnikov, O., & Jarosz, J. (2019). Method for calculating the groundwater inflow into pit when mining the placer deposits by dredger. E3S Web of Conferences, (123), 01025.
  30. Petlovanyi, M., Lozynskyi, V., Zubko, S., Saik, P., & Sai, K. (2019). The influence of geology and ore deposit occurrence conditions on dilution indicators of extracted reserves. Rudarsko Geolosko Naftni Zbornik, 34(1), 83-91.
  31. Umarbekova, Z.T., Zholtayev, G.Z., Zholtayev, G.Z., Amralinova, B.B., & Mataibaeva, I.E. (2020). Silver halides in the hypergene zone of the Arkharly gold deposit as indicators of their formation in dry and hot climate (Dzungar Alatau, Kazakhstan). International Journal of Engineering Research and Technology, 13(1), 181-190.
  32. Telkov, Sh.A., Motovilov, I.Tu., Barmenshinova, M.B., & Abisheva, Z.S. (2021). Study of gravity-flotation concentration of lead-zinc ore at the Shalkiya deposit. Obogashchenie Rud, (6), 9-15.
  33. Sultanov, M.G., Mataev, A.K., Kaumetova, D.S., Abdrashev, R.M., Kuantay, A.S., & Orynbayev, B.M. (2020). Development of the choice of types of support parameters and technologies for their construction at the Voskhod field. Ugol, (10), 17-21.
  34. Matayev, A., Abdiev, A., Kydrashov, A., Musin, A., Khvatina, N., & Kaumetova, D. (2021). Research into technology of fastening the mine workings in the conditions of unstable masses. Mining of Mineral Deposits, 15(3), 78-86.
  35. Arystan, I.D., Baizbaev, M.B., Mataev, A.K., Abdieva L.M., Bogzhanova, Zh.K., & Abdrashev, R.M. (2020). Selection and justification of technology for fixing preparatory workings in unstable massifs on the example of the mine 10 years of independence of Kazakhstan. Ugol, (6), 10-14.
  36. Stupnik, M., Kalinichenko, V., & Pismennyi, S. (2013). Pillars sizing at magnetite quartzites room-work. Annual Scientific-Technical Collection – Mining of Mineral Deposits, 11-15.
  37. Sdvyzhkova, O., Dmytro, B., Moldabayev, S., Rysbekov, K., & Sarybayev, M. (2020). Mathematical modeling a stochastic variation of rock properties at an excavation design. SGEM International Multidisciplinary Scientific GeoConference, 165-172.
  38. Arystan, I.D., Nemova, N.A., Baizbaev, M.B., & Mataev, A.K. (2021). Efficiency of modified concrete in lining in underground structures. IOP Conference Series: Earth and Environmental Science, 773(1), 012063.
  39. Stupnik, N.I., Kalinichenko, V.A., Kolosov, V.A., Pismenniy, S.V., & Fedko, M.B. (2014). Testing complex-structural magnetite quartzite deposits chamber system design theme. Metallurgical and Mining Industry, 6(2), 88-93.
  40. Nurpeissova, M., Bitimbayev, M.Zh., Rysbekov, K.В., Derbisov K., Тurumbetov, Т., & Shults, R. (2020). Geodetic substantiation of the saryarka copper ore region. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 6(444), 194-202.
  41. Bondarenko, V., Kovalevs’ka, I., & Ganushevych, K. (2014). Progressive technologies of coal, coalbed methane, and ores mining. London, United Kingdom: CRC Press, Taylor & Francis Group, 534 p.
  42. Bazaluk, O., Petlovanyi, M., Zubko, S., Lozynskyi, V., & Sai, K. (2021). Instability assessment of hanging wall rocks during underground mining of iron ores. Minerals, 11(8), 858.
  43. Malanchuk, Z., Moshynskyi, V., Stets, S., Ignatiuk, I., & Galiyev, D. (2020). Modelling hydraulic mixture movement along the extraction chamber bottom in case of hydraulic washout of the puff-stone. E3S Web of Conference, (201), 01011.
  44. Aitkazinova, S., Soltabaeva, S., Kyrgizbaeva, G., Rysbekov, K., & Nurpeisova, M. (2016). Methodology of assessment and prediction of critical condition of natural-technical systems. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, (2), 3-10.
  45. Agoshkov, M.I., Mukhin, M.E., & Nazarchik, A.F. (1960). Sistemy razrabotki zhil’nykh mestorozhdeniy. Moskva, Rossiya: Gosgortekhizdat, 376 s.
  46. Rafienko, D.I. (1967). Sistemy s magazinirovaniem rudy pri razrabotke zhil’nykh mestorozhdeniy. Moskva, Rossiya: Nedra, 191 s.
  47. Blinov, A.A., Viktorov, S.D., & Galchenko, Yu.P. (1977). Issledovanie vzryvnoy otboyki glubokimi skvazhinnymi zaryadami pri razrabotke zhil maloy moshchnosti. Aktual’nye Problemy Razrabotki Mestorozhdeniy Tverdykh Poleznykh Iskopaemykh, 143-153.
  48. Tadzhiev, Sh.T., Kobilov, O.S., Ermekbaev, U.B., & Ashuraliev, U.T. (2019). Issledovanie osobennostey tekhnologii razrabotki zhil’nykh mestorozhdeniy kyzykumskogo regiona podzemnym sposobom s ispol’zovaniem samokhodnykh kompleksov. Ukrainian Mining Forum, 32-39.
  49. Bitimbaev, M.Zh., Zhalgasupy, N., & Gumennikov, E.S. (2006). Novaya bezvzryvnaya tekhnologiya vedeniya gornykh rabot. Izvestiya Vysshikh Uchebnykh Zavedeniy. Gornyy Zhurnal, (2), 10-14.
  50. Bitimbaev, M.Zh. (2018). Nekotorye napravleniya razvitiya tekhnologiy gornykh rabot, obespechivayushchikh ikh effektivnost’ i bezopasnost’. World Mining Congress, 1364-1375.
  51. Bitimbaev, M.Zh. (2019). Garmonizatsiya primenimosti tsifrovogo upravleniya dlya tekhnologicheskogo obespecheniya podzemnykh gornykh rabot. Gornyy Zhurnal Kazakhstana, (10), 49-54.
  52. Bitimbaev, M.Zh. (2019). Novye varianty sistemy razrabotki s magazinirovaniem: Kardinal’noe uluchshenie pokazateley dobychi. Gornyy Zhurnal Kazakhstana, (7), 8-14.
  53. Bitimbayev, M.Z., Rysbekov, K.B., Krupnik, L.A., & Stolpovskikh, I.N. (2022). Method for development of steeply dipping ore bodies. Patent #35375, Kazakhstan.
  54. Bitimbayev, M.Z., Rysbekov, K.B., Krupnik, L.A., & Stolpovskikh, I.N. (2022). Method of underground development of ore deposits using “bottom-up” approach. Patent #6903, Kazakhstan.
  55. Лицензия Creative Commons