Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Analysis of the regularities of basalt open-pit fissility for energy efficiency of ore preparation

Yevhenii Malanchuk1, Viktor Moshynskyi1, Andriy Khrystyuk1, Zinovii Malanchuk1, Valerii Korniienko1, Arstanbek Abdiev2

1National University of Water and Environmental Engineering, Rivne, Ukraine

2Kyrgyz State Mining University, Bishkek, Kyrgyzstan


Min. miner. depos. 2022, 16(1):68-76


https://doi.org/10.33271/mining16.01.068

Full text (PDF)


      ABSTRACT

      Purpose. To identify dependence of specific rock mass fissility upon the bench height of basalt open pits based upon the analysis of basalt open-pit bench fissility.

      Methods. Fractural tectonics of basalt open pits was studied experimentally. In addition to the specific fissility, the studies determined both shape and quantity of natural blocks within each bench meter; their geometry in terms of fissure frequency; and nature of changes in the fissure number as well as geometry of the blocks depending upon a bench height. Graphical analysis of the obtained results has helped determine the typical dependencies of fissure number upon the changes in the open-pit bench height.

      Findings. It has been defined that the specific fissility of basalt benches is distributed irregularly in terms of an open-pit bench height. Field studies, involved three basalt open pits, have made it possible to identify that the 3rd degree polynomial is the most adequate approximation of the specific fissility dependence upon the bench height.

      Originality. For the first time, the experiments have helped define that rock mass joints a share downward from the smaller to the larger ones following a parabolic law (according to a cubic expression). The obtained regularities help identify the percentage of shares of three sizes for each bench height meter.

      Practical implications. Estimate of share percentage will make it possible to schedule rationally the drilling and blasting operations while selecting energy efficient parameters of production facilities for further basalt processing.

      Keywords: basalt, fissility, tectonics, bench, open pit, energy efficiency


      REFERENCES

  1. Kostenko, M.M. (2014). A raw mineral-material base of Ukraine. Article 3. State of raw mineral-material base of non-metal minerals of Ukraine and basic directions of geological survey works. Mineral Resources of Ukraine, (4), 6-13.
  2. Levine, R.M., Brininstool, M., & Wallace, G.J. (2007). The mineral industry of Ukraine. Minerals Yearbook, (3), 46.
  3. Horoshkova, L., Volkov, V., & Khlobystov, I. (2019). Prognostic model of mineral resources development in Ukraine. Monitoring, (1), 1-5. https://doi.org/10.3997/2214-4609.201903171
  4. Lozynskyi, V., Saik, P., Petlovanyi, M., Sai, K., Malanchuk, Z., & Malanchuk, Y. (2018). Substantiation into mass and heat balance for underground coal gasification in faulting zones. Inzynieria Mineralna, 19(2), 289-300. https://doi.org/10.29227/IM-2018-02-36
  5. Sai, K., Malanchuk, Z., Petlovanyi, M., Saik, P., & Lozynskyi, V. (2019). Research of thermodynamic conditions for gas hydrates formation from methane in the coal mines. Solid State Phenomena, (291), 155-172. https://doi.org/10.4028/www.scientific.net/SSP.291.155
  6. Saik, P.B., Dychkovskyi, R.O., Lozynskyi, V.H., Malanchuk, Z.R., & Malanchuk, Ye.Z. (2016). Revisiting the underground gasification of coal reserves from contiguous seams. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 60-66.
  7. Kryvdik, S.G. (2002). Rare-metal syenites of the Ukrainian Shield. Geochemistry International, 40(7), 639-648.
  8. Tomilenko, A.A., & Kovyazin, S.V. (2008). Development of corona textures around olivine in anorthosites of the Korosten’pluton, Ukrainian Shield: Mineralogy, geochemistry, and fluid inclusions. Petrology, 16(1), 87-103. https://doi.org/10.1134/S0869591108010050
  9. Kryvdik, S.G., Nivin, V.A., Kul’chitskaya, A.A., Voznyak, D.K., Kalinichenko, A.M., Zagnitko, V.N., & Dubyna, A.V. (2007). Hydrocarbons and other volatile components in alkaline rocks from the Ukrainian Shield and Kola Peninsula. Geochemistry International, 45(3), 270-294. https://doi.org/10.1134/S0016702907030068
  10. Shumlyanskyy, L., Franz, G., Glynn, S., Mytrokhyn, O., Voznyak, D., & Bilan, O. (2021). Geochronology of granites of the western Korosten AMCG complex (Ukrainian Shield): Implications for the emplacement history and origin of miarolitic pegmatites. European Journal of Mineralogy, 33(6), 703-716. https://doi.org/10.5194/ejm-33-703-2021
  11. Naduty, V., Malanchuk, Z., Malanchuk, E., & Korniyenko, V. (2015). Modeling of vibro screening at fine classification of metallic basalt. New Developments in Mining Engineering, 441-443. https://doi.org/10.1201/b19901-77
  12. Khomenko, O.Ye. (2012). Implementation of energy method in study of zonal disintegration of rocks. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 44-54.
  13. Rysbekov, K., Toktarov, A., Kalybekov, T., Moldabayev, S., Yessezhulov, T., & Bakhmagambetova, G. (2020). Mine planning subject to prepared ore reserves rationing. E3S Web of Conference, (168), 00016. https://doi.org/10.1051/e3sconf/202016800016
  14. Galiev, S.Z., Galiev, D.A., Seitaev, E.N., & Uteshov, E.T. (2019). Unified methodology for management of a geotechnological complex in open pit mining. Gornyi Zhurnal, (12), 70-75. https://doi.org/10.17580/gzh.2019.12.15
  15. Okrusch, M., & Frimmel, H. (2020). The origin of basalt. Mineralogy, 341-346. https://doi.org/10.1007/978-3-662-57316-7_19
  16. Zhenjiang, L., Chuanqing, Z., & Chunsheng, Z. (2019). Deformation and failure characteristics and fracture evolution of cryptocrystalline basalt. Journal of Rock Mechanics and Geotechnical Engineering, 11(5). 990-1003. https://doi.org/10.1016/j.jrmge.2019.04.005
  17. Abdiev, A.R., Mambetova, R.S., & Mambetov, S.A. (2017). Geomechanical assessment of Tyan-Shan’s mountains structures for efficient mining and mine construction. Gornyi Zhurnal, (4), 23-28. https://doi.org/10.17580/gzh.2017.04.04
  18. Dauletbakov, T.S., Mambetaliyeva, A.R., Dosmukhamedov, N.K., Zhandauletova, F.R., & Moldabaeva, G.Z. (2016). Complex processing of industrial products and lead-copper concentrates. Eurasian Chemico-Technological Journal, 17(4), 301. https://doi.org/10.18321/ectj274
  19. Mambetov, S.A., Mambetov, A.S., & Abdiev, A.R. (2002). Zonal and step-by-step evaluation of the stressed-strained state of Tyan’-Shan’ rock massif. Gornyi Zhurnal, (10), 57-62.
  20. Kruglov, O., & Menshov, O. (2017). To the soil magnetic susceptibility application in modern soil science. Geoinformatics – Theoretical and Applied Aspects, 1-6. https://doi.org/10.3997/2214-4609.201701906
  21. Nukarbekova, J., Mukhametkhan, B., Mazhit, А., & Shults, R. (2021). Methodology of creating board stability map careers using GIS technologies. Vestnik KazNRTU, 143(1), 24-29. https://doi.org/10.51301/vest.su.2021.v143.i1.04
  22. Zhukov, S.O., & Sobolevs’kyy, R.V. (2004). Zahal’ni zakonomirnosti prostorovoho rozmishchennya tektonichnykh rozlomiv ta rozvytok yikh pryrodnoho radiatsiynoho fonu. Visnyk ZHDTU, (31), 193-201.
  23. Chetverik, M.S., Bokiy, Ye.V., & Ikol, A.A. (2007). Formirovaniye kompleksov pri tekhnologii predobogashchenii rudy v kar’yerakh. Metallurgicheskaya i Gornorudnaya Promyshlennost’, (3), 21-23.
  24. Nadutyy, V.P., Érpert, A.M., & Hrynyuk, T.YU. (2007). Opredelenye treshchynovatosty ustupa bazal’tovoho kar’era. Heotekhnichna Mekhanika, (68), 40-48.
  25. Grinyuk, T.YU. (2008). Obosnovaniye neobkhodimosti kompleksnogo podkhoda k dobyche i pererabotke bazal’tov Volyni. Heotekhnichna Mekhanika, (57), 21-25.
  26. Nadutyy, V.P., & Hrynyuk, T.Yu. (2006). Eksperimental’nye issledovaniya sostava i vybora metoda pererabotki med’soderzhashchykh bazal’tov Volyni. Visnyk Natsional’noho Tekhnichnoho Universytetu “KHPI”, (25), 101-107.
  27. Samygin, V.D., Filimonov, L.O., & Shekhirev, D.V. (2003). Osnovy obogashcheniya rud. Moskva, Rossiya: Al’teks, 304 s.
  28. Turysbekov, D., Tussupbayev, N., Semushkina, L., Narbekova, S., Kaldybaeva, Z., & Mambetaliyeva, A. (2021). Effect of the water-air emulsion size of the foaming agent solution on the non-ferrous metal minerals flotation ability. Metalurgija, 60(3-4), 395-398.
  29. Dyachkov, B.A., Amralinova, B.B., Mataybaeva, I.E., Dolgopolova, A.V., Mizerny, A.I., & Miroshnikova, A.P. (2017). Laws of formation and criteria for predicting nickel content in weathering crusts of east Kazakhstan. Journal of the Geological Society of India, 89(5), 605-609. https://doi.org/10.1007/s12594-017-0650-7
  30. Umarbekova, Z.T., Zholtayev, G.Z., Zholtayev, G.Z., Amralinova, B.B., & Mataibaeva, I.E. (2020). Silver halides in the hypergene zone of the arkharly gold deposit as indicators of their formation in dry and hot climate. International Journal of Engineering Research and Technology, 13(1), 181-190. https://doi.org/10.37624/ijert/13.1.2020.181-190
  31. Kutuzov, B.N. (2009). Metody vedeniya vzryvnykh rabot. Moskva, Rossiya: Izdatel’stvo Moskovskogo gosudarstvennogo gornogo universiteta, 471 s.
  32. Mulyavko, V.I., Oleynik, T.A., Oleynik, M.O., Mikhno, S.V., & Lyashenko, V.I. (2014). Innovation technologies and machinery for separation of feebly magnetic ores. Obogashchenie Rud, (2), 43-49.
  33. Telkov, Sh., Motovilov, I., & Barmenshinova, M. (2020). Study of the effect of pre-concentration on polymetallic ore grindability. Vestnik KazNRTU, 140(4), 623-628.
  34. Stupnik, M., Kolosov, V., Pysmennyi, S., & Kostiantyn, K. (2019). Selective mining of complex stuctured ore deposits by open stop systems. E3S Web of Conferences, (123), 01007. https://doi.org/10.1051/e3sconf/201912301007
  35. Naduty, V., Malanchuk, Z., Malanchuk, Y., & Korniyenko, V. (2016). Research results proving the dependence of the copper concentrate amount recovered from basalt raw material on the electric separator field intensity. Eastern-European Journal of Enterprise Technologies, 5(5(83)), 19-24. https://doi.org/10.15587/1729-4061.2016.79524
  36. Malanchuk, Y., Moshynskyi, V., Korniienko, V., & Malanchuk, Z. (2018). Modeling the process of hydromechanical amber extraction. E3S Web of Conferences, (60), 00005. https://doi.org/10.1051/e3sconf/20186000005
  37. Malanchuk, Z., Moshynskyi, V., Malanchuk, Y., & Korniienko, V. (2018). Physico-mechanical and chemical characteristics of amber. Solid State Phenomena, (277), 80-89. https://doi.org/10.4028/www.scientific.net/ssp.277.80
  38. Telkov, Sh.A., Motovilov, I.Tu., Barmenshinova, M.B., & Abisheva, Z.S. (2021). Study of gravity-flotation concentration of lead-zinc ore at the Shalkiya deposit. Obogashchenie Rud, (6), 9-15.
  39. Malanchuk, Z.R., Moshynskyi, V.S., Korniienko, V.Y., Malanchuk, Y.Z., & Lozynskyi, V.H. (2019). Substantiating parameters of zeolite-smectite puff-stone washout and migration within an extraction chamber. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 11-18. https://doi.org/10.29202/nvngu/2019-6/2
  40. Yefremov, E.I., Nadutyy, V.P., & Kratkovskiy, I.L. (2008). Rekomendatsii po povysheniyu ekonomicheskoy effektivnosti burovzryvnykh rabot na Rafalovskom bazal’tovom kar’yere. Geotekhnichna Mekhanika, 1-9.
  41. Moshynskyi, V., Malanchuk, Z., Tsymbaliuk, V., Malanchuk, L., Zhomyruk, R., & Vasylchuk, O. (2020). Research into the process of storage and recycling technogenic phosphogypsum placers. Mining of Mineral Deposits, 14(2), 95-102. https://doi.org/10.33271/mining14.02.095
  42. Chernai, A.V., Sobolev, V.V., Chernai, V.A., Ilyushin, M.A., & Dlugashek, A. (2003). Laser ignition of explosive compositions based on di-(3-hydrazino-4-amino-1,2,3-triazole)-copper(II) perchlorate. Combustion, Explosion and Shock Waves, 39(3), 335-339. https://doi.org/10.1023/A:1023852505414
  43. Begalinov, A.B., Serdaliev, E.T., Iskakov, E.E., & Amanzholov, D.B. (2013). Shock blasting of ore stockpiles by low-density explosive charges. Journal of Mining Science, 49(6), 926-931. https://doi.org/10.1134/s1062739149060129
  44. Sobolev, V.V., & Usherenko, S.M. (2006). Shock-wave initiation of nuclear transmutation of chemical elements. Journal de Physique, (134), 977-982. https://doi.org/10.1051/jp4:2006134149
  45. Malanchuk, Z., Korniyenko, V., Malanchuk, Y., & Khrystyuk, A. (2016). Results of experimental studies of amber extraction by hydromechanical method in Ukraine. Eastern-European Journal of Enterprise Technologies, 3(10(81)), 24-28. https://doi.org/10.15587/1729-4061.2016.72404
  46. Toscan, L., Kautzmann, R., & Sabedot, S. (2007). The residuals of basalt mining in the northeast of Rio Grande do Sul, Brazil: Evaluation of the problem. Revista Escola de Minas, (60), 657-662. https://doi.org/10.1590/S0370-44672007000400011
  47. Tamirat, T., Chekol, T., & Meshesha, D. (2021). Petrology and geochemistry of basaltic rocks from north western Ethiopian plateau continental flood basalt. Journal of African Earth Sciences, 182(4), 104282. https://doi.org/10.1016/j.jafrearsci.2021.104282
  48. Zhanakova, R., Pankratenko, А., Almenov, Т., & Bektur, В. (2020). Rational selection of the form of support for the formation of genetic composition of rocks in the conditions of the beskempir field. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, (439), 106-113. https://doi.org/10.32014/2020.2518-170X.13
  49. Zh, L., Chunsheng, Z., & Chuanqing, Z. (2021). Effects of amygdale heterogeneity and sample size on the mechanical properties of basalt. Journal of Rock Mechanics and Geotechnical Engineering, 14(1), 93-107. https://doi.org/10.1016/j.jrmge.2021.10.001
  50. Fedorov, E., Kassymkanova, K.K., Jangulova, G., & Miletenko, N. (2020). The influence of extensive caving zones on the state and behavior of the surface as a result of underground mining works. E3S Web of Conferences, (192), 03009. https://doi.org/10.1051/e3sconf/202019203009
  51. Bitimbaev, M.Z., Krupnik, L.A., Aben, E.K., & Aben, K.K. (2017). Adjustment of backfill composition for mineral mining under open pit bottom. Gornyi Zhurnal, (2), 57-61. https://doi.org/10.17580/gzh.2017.02.10
  52. Stavrou A., & Murphy W. (2018). Quantifying the effects of scale and heterogeneity on the confined strength of micro-defected rocks. International Journal of Rock Mechanics and Mining Sciences, (102), 131-143. https://doi.org/10.1016/j.ijrmms.2018.01.019
  53. Tuğrul, A., & Arel, E. (2021). Mineralogical, chemical and geotechnical characteristics of basaltic soil in Niksar, Northern Turkey. Engineering Geology, 199-206. https://doi.org/10.1201/9780429087813-20
  54. Kalybekov, T., Rysbekov, K., Nаuryzbayeva, D., Toktarov, A., & Zhakypbek, Y. (2020). Substantiation of averaging the content of mined ores with account of their readiness for mining. E3S Web of Conferences, (201), 01039. https://doi.org/10.1051/e3sconf/202020101039
  55. Strzałkowski, P., Duchnowska, M., Kaźmierczak, U., Bakalarz, A., Wolny, M., Karwowski, P., & Stępień, T. (2021). Evaluation of the structure and geometric properties of crushed igneous rock aggregates. Materials, 14(23), 7202. https://doi.org/10.3390/ma14237202
  56. Malanchuk, Z., Moshynskyi, V., Malanchuk, Y., Korniienko, V., & Koziar, M. (2020). Results of research into the content of rare earth materials in man-made phosphogypsum deposits. Key Engineering Materials, (844), 77-87. https://doi.org/10.4028/www.scientific.net/KEM.844.77
  57. Juneja, A., & Pinaki, P. (2019). A numerical study on extent of crushed zone around blasthole in basalt rock. Geotechnical and Geological Engineering, (37), 1283-1296. https://doi.org/10.1007/s10706-018-0685-6
  58. Cherniaiev, O.V. (2017). Systematization of the hard rock non-metallic mineral deposits for improvement of their mining technologies. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 11-17.
  59. Bekbergenov, D., Jangulova, G., Kassymkanova, K.K., & Bektur, B. (2020). Mine technical system with repeated geotechnology within new frames of sustainable development of underground mining of caved deposits of the Zhezkazgan field. Geodesy and Cartography, 46(4), 182-187. https://doi.org/10.3846/gac.2020.10571
  60. Baranov, Ye.G. (1982). Puti intensifikatsii protsessov otboyki, drobleniya i izmel’cheniya na zhelezorudnykh kar’yerakh. Gornyy Zhurnal, (8), 37-42.
  61. Ramos, C., & Kautzmann, R.A. (2014). Preliminary study of volcanic rocks for stonemeal application. Environmental Nanotechnology, Monitoring & Management, 1-2. https://doi.org/10.1016/j.enmm.2014.03.002
  62. Gornostayev, S.S., Crocket, J.H., Mochalov, A.G., & Laajoki, K.V.O. (1999). The platinum-group minerals of the Baimka placer deposits, Aluchin horst, Russian Far East. Canadian Mineralogist, 37(5), 1117-1129.
  63. Malanchuk, Z., Korniienko, V., Malanchuk, Y., & Moshynskyi, V. (2019). Analyzing vibration effect on amber buoying up velocity. E3S Web of Conferences, (123), 01018. https://doi.org/10.1051/e3sconf/201912301018
  64. Malanchuk, E., Malanchuk, Z., Hristuk, A., & Zagorovsky, V. (2015). Simulation of the comminution process to complex processing of metal-bearing basalt raw material. Cambridge Journal of Education and Science, 2(14), 542-549.
  65. Nadutyi, V., Korniienko, V., Malanchuk, Z., & Cholyshkina, O. (2019). Analytical presentation of the separation of dense suspension for the extraction of amber. E3S Web of Conferences, (109), 00059. https://doi.org/10.1051/e3sconf/201910900059
  66. Malanchuk, Z., Korniyenko, V., Malanchuk, Y., Khrystyuk, A., & Kozyar, M. (2020). Identification of the process of hydromechanical extraction of amber. E3S Web of Conferences, (166), 02008. https://doi.org/10.1051/e3sconf/202016602008
  67. Malanchuk, Z., Malanchuk, Y., Korniyenko, V., & Ignatyuk, I. (2017). Examining features of the process of heavy metals distribution in technogenic placers at hydraulic mining. Eastern-European Journal of Enterprise Technologies, 1(10(85)), 45-51. https://doi.org/10.15587/1729-4061.2017.92638
  68. Begalinov, A., Khomiakov, V., Serdaliyev, Y., Iskakov, Y., & Zhanbolatov, A. (2020). Formulation of methods reducing landslide phenomena and the collapse of career slopes during open-pit mining. E3S Web of Conferences, (168), 00006. https://doi.org/10.1051/e3sconf/202016800006
  69. Cheskidov, V., Kassymkanova, K.-K., Lipina, A., & Bornman, M. (2019). Modern methods of monitoring and predicting the state of slope structures. E3S Web of Conferences, (105), 01001. https://doi.org/10.1051/e3sconf/201910501001
  70. Pavlychenko, A., & Kovalenko, A. (2013). The investigation of rock dumps influence to the levels of heavy metals contamination of soil. Annual Scientific-Technical Collection – Mining of Mineral Deposits, 237-238. https://doi.org/10.1201/b16354-43
  71. Nurpeissova, М., Rysbekov, K., Kenesbayeva, А., Bekbassarov, Zh., Levin, E. (2021). Simulation of geodynamic processes. Vestnik KazNRTU, 134(4), 16-24. https://doi.org/10.51301/vest.su.2021.i4.03
  72. Dyachkov, B.A., Bissatova, A.Y., Mizernaya, M.A., Zimanovskaya, N.A., Oitseva, T.A., Amralinova, B.B., Aitbayeva, S.S., Kuzmina, O.N., & Orazbekova, G.B. (2021). Specific features of geotectonic development and ore potential in Southern Altai. Geology of Ore Deposits, 63(5), 383-408. https://doi.org/10.1134/S1075701521050020
  73. Begalinov, A., Shautenov, M., Almenov, T., Bektur, B., & Zhanakova, R. (2019). Prospects for the effective use of reagents based on sulfur compounds in the technology of extracting gold from resistant types of gold ore. Journal of Advanced Research in Dynamical and Control Systems, 11(8), 1791-1796.
  74. Chakrabarti, S., & Kodikara, J. (2003). Basaltic crushed rock stabilized with cementitious additives: compressive strength and stiffness, drying shrinkage, and capillary flow characteristics. Transportation Research Record, 1819(1), 18-26. https://doi.org/10.3141/1819b-03
  75. Lyashenko, V.I., Dyatchin, V.Z., & Franchuk, V.P. (2018). Improvement of vibrating feeders-screens for mining and metallurgical industry. Izvestiya. Ferrous Metallurgy, 61(6), 470-477. https://doi.org/10.17073/0368-0797-2018-6-470-477
  76. Shustov, O., Pavlychenko, A., Bondarenko, A., Bielov, O., Borysovska, O., & Abdiev, A. (2021). Substantiation into parameters of carbon fuel production technology from brown coal. Materials Science Forum, (1045), 90-101. https://doi.org/10.4028/www.scientific.net/MSF.1045.90
  77. Mikhlin, Y.V., & Zhupiev, A.L. (1997). An application of the ince algebraization to the stability of non-linear normal vibration modes. International Journal of Non-Linear Mechanics, 32(2), 393-409. https://doi.org/10.1016/s0020-7462(96)00047-9
  78. Malanchuk, Y., Khrystyuk, A., Moshynskyi, V., Martyniuk, P., & Malanchuk, Z. (2021). Regularities in the distribution of granulometric composition of tuff while crushing. Mining of Mineral Deposits, 15(1), 66-74 https://doi.org/10.33271/mining15.01.066
  79. Malanchuk, Z., Moshynskyi, V., Stets, S., Ignatiuk, I., & Galiyev, D. (2020). Modelling hydraulic mixture movement along the extraction chamber bottom in case of hydraulic washout of the puff-stone. E3S Web of Conference, (201), 01011. https://doi.org/10.1051/e3sconf/202020101011
  80. Лицензия Creative Commons