Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Optimization solution substantiation for resource-saving maintenance of workings

Vasyl Snihur1, Volodymyr Bondarenko2, Iryna Kovalevska2, Oleksandr Husiev3, Iryna Shaikhlislamova2

1MM “Heroiv Kosmosu”, PJSC “DTEK Pavlohradvuhillia”, Pavlohrad, Ukraine

2Dnipro University of Technology, Dnipro, Ukraine

3MM “Dniprovske”, PJSC “DTEK Pavlohradvuhillia”, Pavlohrad, Ukraine


Min. miner. depos. 2022, 16(1):9-18


https://doi.org/10.33271/mining16.01.009

Full text (PDF)


      ABSTRACT

      Purpose. Substantiate the expediency of optimizing decision-making in resource-saving maintenance of mine workings.

      Methods. The concept of ensuring the conditions for the repeated use of mine working is based on modern methods of managing the rock pressure manifestations, conducting multifactorial computational experiments, experimental verification of the principles’ implementation during effective use of resources in full-scale conditions.

      Findings. The directions of improving the fastening and protection structures, which ensure the stability of reused mine workings, have been determined. In this case, the most lightweight protection structure is proposed, the functions of which are transferred to the collapsed and compacted rocks of the uncontrolled collapse zone.

      Originality. The basic concept of repeated use of mine workings, taking into account resource-saving technologies, has been formulated and implemented. The stress-strain state of the “mass – support – protection elements” system has been studied, and its rational parameters have been optimized. An example of an optimization solution based on the stated methodology is presented.

      Practical implications. The schemes have been developed for calculating the parameters of loading the fastening and protection structures in reused mine workings with a geomechanical substantiation of the adopted provisions and assumptions, which is the basis for issuing recommendations to ensure the mine working stability.

      Keywords: rock mass, reused mine working, efficient use of resources, fastening system, protection elements


      REFERENCES

  1. Kicki, J., & Dyczko, A. (2010). The concept of automation and monitoring of the production process in an underground mine. New Techniques and Technologies in Mining, 245-253.https://doi.org/10.1201/b11329-41
  2. Kopacz, M., Kulpa, J., Galica, D., Dyczko, A., & Jarosz, J. (2019). Economic valuation of coal deposits – The value of geological information in the resource recognition process. Resources Policy, (63), 101450. https://doi.org/10.1016/j.resourpol.2019.101450
  3. Word Coal. (2020). WCA comments on IEA Energy Technology Perspectives Report. Retrieved from: https://www.worldcoal.com/coal/14092020/wca-comments-on-iea-energy-technology-perspectives-report/
  4. Enerhetyka. Elektroenerhetyka ta okhorona navkolyshnoho seredovyshcha. Funktsionuvannia enerhetyky v suchasnomu sviti. Istoriia, suchasnist i maybutnie. (2012). Rozdil 2. Obiemy ta struktura svitovoho vyrobnytstva enerhii. Retrieved from: http://energetika.in.ua/ua/books/book-5/part-5/section-2
  5. Statisticheskiy yezhegodnik mirovoy energetiki. (2020). Vnutrennee potreblenie kamennogo uglya i lignita. Retrieved from: https://yearbook.enerdata.ru/coal-lignite/coal-world-consumption-data.html
  6. Ricketts, B. (2019). Eeurocoal. Changing the face of coal: an outline strategic research agenda for future coal-related RTD in the European Union. Retrieved from: https://ec.europa.eu/energy/sites/ener/files/documents/12.1_euracoal.pdf
  7. Bondarenko, V.I., Kharin, Ye.N., Antoshchenko, N.I., & Gasyuk, R.L. (2013). Basic scientific positions of forecast of the dynamics of methane release when mining the gas bearing coal seams. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 24-30.
  8. Buzylo, V., Pavlychenko, A., Savelieva, T., & Borysovska, O. (2018). Ecological aspects of managing the stressed-deformed state of the mountain massif during the development of multiple coal layers. E3S Web of Conferences, (60), 00013. https://doi.org/10.1051/e3sconf/20186000013
  9. Rudakov, D., & Sobolev, V. (2019). A mathematical model of gas flow during coal outburst initiation. International Journal of Mining Science and Technology, 29(5), 791-796. https://doi.org/10.1016/j.ijmst.2019.02.002
  10. Dubiński, J., Prusek, S., Turek, M., & Wachowicz, J. (2020). Hard Coal Production Competitiveness in Poland. Journal of Mining Science, (56), 322-330. https://doi.org/10.1134/S1062739120026806
  11. World Energy Outlook 2020. (2020). Retrieved from: https://www.iea.org/reports/world-energy-outlook-2020
  12. Bondarenko, V., Kovalevska, I., Cawood, F., Husiev, O., Snihur, V., & Jimu, D. (2021). Development and testing of an algorithm for calculating the load on support of mine workings. Mining of Mineral Deposits, 15(1), 1-10. https://doi.org/10.33271/mining15.01.001
  13. Bondarenko, V., Kovalevs’ka, I., Svystun, R., & Cherednichenko, Yu. (2013). Optimal parameters of wall bolts computation in the united bearing system of extraction workings frame-bolt support. Annual Scientific-Technical Collection – Mining of Mineral Deposits, 5-10. https://doi.org/10.1201/b16354-2
  14. Grincheko, A.I., & Golovneva, H.E. (2019). Reusing underground mine space of closing mines. Topical Issues of Rational Use of Natural Resources, 615-621. https://doi.org/10.1201/9781003014638-20
  15. Malashkevych, D., Poimanov, S., Shypunov, S., & Yerisov, M. (2020). Comprehensive assessment of the mined coal quality and mining conditions in the Western Donbas mines. E3S Web of Conferences, (201), 01013. https://doi.org/10.1051/e3sconf/202020101013
  16. Lozynskyi, V., Saik, P., Petlovanyi, M., Sai, K., & Malanchyk, Z. (2018). Analytical research of the stress-deformed state in the rock massif around faulting. international. Journal of Engineering Research in Africa, (35), 77-88. https://doi.org/10.4028/www.scientific.net/JERA.35.77
  17. Bondarenko V., Kovalevska, I. Symanovych, G., Sotskov, V., & Barabash, M. (2018). Geomechanics of interference between the operation modes of mine working support elements at their loading. Mining Science, (25), 219-235. https://doi.org/10.5277/msc182515
  18. Bondarenko, V., Kovalevs’ka, I., & Ganushevych, K. (2014). Progressive technologies of coal, coalbed methane, and ores mining. London, United Kingdom: CRC Press, Taylor & Francis Group, 523 p. https://doi.org/10.1201/b17547
  19. Sotskov, V., & Saleev, I. (2013). Investigation of the rock massif stress strain state in conditions of the drainage drift overworking. Annual Scientific-Technical Collection – Mining of Mineral Deposits, 197-201. https://doi.org/10.1201/b16354-35
  20. Dyczko, A., Kamiński, P., Jarosz, J., Rak, Z., Jasiulek, D., & Sinka, T. (2021). Monitoring of roof bolting as an element of the project of the introduction of roof bolting in polish coal mines-case study. Energies, 15(1), 95. https://doi.org/10.3390/en15010095
  21. Lozynskyi, V., Medianyk, V., Saik, P., Rysbekov, K., & Demydov, M. (2020). Multivariance solutions for designing new levels of coal mines. Rudarsko-Geološko-Naftni Zbornik, 35(2), 23-31. https://doi.org/10.17794/rgn.2020.2.3
  22. Kovalevs’ka, I., Fomychov, V., Illiashov, M., & Chervatuk, V. (2012). The formation of the finite-element model of the system “undermined massif-support of stope”. Geomechanical Processes During Underground Mining, 73-80. https://doi.org/10.1201/b13157-13
  23. Aitkazinova, S.K., Nurpeisova, M.B., Kirgizbaeva, G.M., & Milev, I. (2014). Geomechanical monitoring of the massif of rocks at the combined way of development of fields. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, 2(2), 279-292.
  24. Małkowski, P., Niedbalski, Z., Majcherczyk, T., & Bednarek, Ł. (2020). Underground monitoring as the best way of roadways support design validation in a long time period. Mining of Mineral Deposits, 14(3), 1-14. https://doi.org/10.33271/mining14.03.001
  25. Khalymendyk, I., & Baryshnikov, A. (2018). The mechanism of roadway deformation in conditions of laminated rocks. Journal of Sustainable Mining, 17(2), 41-47. https://doi.org/10.1016/j.jsm.2018.03.004
  26. Pivnyak, G., Bondarenko, V., Kovalevs’ka, I., & Illiashov, M. (2012). Geomechanical processes during underground mining. London, United Kingdom: CRC Press, Taylor & Francis Group, 300 p. https://doi.org/10.1201/b13157
  27. Skipochka, S. (2019). Conceptual basis of mining intensification by the geomechanical factor. E3S Web of Conferences, (109), 00089. https://doi.org/10.1051/e3sconf/201910900089
  28. SOU 10.1.00185790.011:2007. (2008). Pidhotovchi vyrobky na polohykh plastakh. Vybir kriplennia, sposobiv i zasobiv okhorony. Standart Minvuhlepromu Ukrainy. Donetsk, Ukraina: DonVUHI, 114 s.
  29. Kovalevs’ka, I., Symanovych, G., & Fomychov, V. (2013). Research of stress-strain state of cracked coal-containing massif near-the-working area using finite elements technique. Annual Scientific-Technical Collection – Mining of Mineral Deposits, 159-163. https://doi.org/10.1201/b16354-28
  30. Bondarenko, V., Symanovych, G., & Koval, O. (2012). The mechanism of over-coal thin-layered massif deformation of weak rocks in a longwall. Geomechanical Processes During Underground Mining, 41-44. https://doi.org/10.1201/b13157-8
  31. Symanovych, G., Demydov, M., & Chervatuk, V. (2013). Influence mechanism of rock mass structure forming a stress on a face support. Annual Scientific-Technical Collection – Mining of Mineral Deposits, 77-81. https://doi.org/10.1201/b16354-15
  32. Niedbalski, Z., Małkowski, P., & Majcherczyk, T. (2013) Monitoring of stand-and-roof-bolting support: design pptimization. Acta Geodynamica Geomaterialia, 215-226. https://doi.org/10.13168/agg.2013.0022
  33. Bekbergenov, D., Jangulova, G., Kassymkanova, K.-K., & Bektur, B. (2020). Mine technical system with repeated geotechnology within new frames of sustainable development of underground mining of caved deposits of the Zhezkazgan field. Geodesy and Cartography, 46(4), 182-187. https://doi.org/10.3846/gac.2020.10571
  34. Małkowski, P., Niedbalski, Z., & Majcherczyk, T. (2008) Endoscopic method of rock mass quality evaluation – new experiences. In San Francisco: 42nd US rock mechanics symposium; 2nd US-Canada Rock Mechanics Symposium. San Francisco.
  35. Majcherczyk, T., Małkowski, P., & Niedbalski, Z. (2005). Describing quality of rocks around underground headings: Endoscopic observations of fractures. Eurock 2005 – Impact of Human Activity on the Geological Environment (pp. 355-360). Konečny (ed). London, United Kingdom: CRC Press, Taylor & Francis Group.
  36. Pivnyak, G., Bondarenko, V., & Kovalevska, I. (2015). New developments in mining engineering 2015: Theoretical and practical solutions of mineral resources mining. London, United Kingdom: CRC Press, Taylor & Francis Group, 607 p. https://doi.org/10.1201/b19901
  37. Simanovich, G., Serdiuk, V., Fomichov, I. A., & Bondarenko, V. (2007). Research of Rock Stresses and Deformations Around Mining Workings. Technical, Technological and Economical Aspects of Thin-Seams Coal Mining. International Mining Forum, 47-56. https://doi.org/10.1201/noe0415436700.ch6
  38. Pisarenko, G.S. (1979). Soprotivlenie materialov. Kyiv, Ukraina: Vyshcha shkola, 696 s.
  39. Bulychyov, N.S. (1982). Mekhanika podzemnykh sooruzheniy. Moskva, Rossiya: Nedra, 270 s.
  40. Abdiev, A., Mambetova, R., Abdiev, A., & Abdiev S. (2020). Development of methods for assessing the mine workings stability. E3S Web of Conference, (201), 01040. https://doi.org/10.1051/e3sconf/202020101040
  41. Savost’yanov, А.V., & Klochkov, V.G. (1992). Upravlenie sostoyaniem massiva gornykh porod. Kyiv, Ukraina: UMK VО, 276 s.
  42. Simanovich, А.М., Srebnyy, М.А., Маlov, V.I., & Belinskiy, I.L. (1973). Sovershenstvovanie sposobov okhrany podgotovitel’nykh vyrabotok. Donetsk, Ukraina: Donbass, 121 s.
  43. Simanovich, А.М., & Srebnyy, М.А. (1976). Okhrana vyrabotok na gorizontakh. Moskva, Rossiya: Nedra, 144 s.
  44. Лицензия Creative Commons