Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Increasing hydrocarbon recovery of Hadiach field by means of CO2 injection as a part of the decarbonization process of the energy sector in Ukraine

Serhii Matkivskyi1

1JSC “Ukrgazvydobuvannia”, Kyiv, Ukraine


Min. miner. depos. 2022, 16(1):114-120


https://doi.org/10.33271/mining16.01.114

Full text (PDF)


      ABSTRACT

      Purpose is studying the efficiency of a carbon dioxide injection technology to control a water flooding process of the reservoir of the horizon V-16 of Hadiach oil and gas condensate field and displace the residual gas reserves trapped by the formation water involving numerical modelling.

      Methods. A technology of carbon dioxide injection into the reservoir of the horizon V-16 of Hadiach oil and gas condensate field was tested in terms of numerical reservoir model with the use of basic modelling instruments.

      Findings. The modelling results makes it possible to calculate the main technological indices of the development of the reservoir of the horizon V-16 of Hadiach oil and gas condensate field in terms of carbon dioxide injection and while developing for depletion. According to the results of the performed calculations, it is identified that there is considerable influence of the number of injection wells on the efficiency of the analyzed technology as for control of a water flooding process in the productive formation. It should be noted that while increasing the number of injection wells, more complete coverage of the gas-bearing area with carbon dioxide is provided; owing to that, the efficiency of blocking the formation water inflow into the production wells turns to be much higher. The implementation of the technology under study makes it possible to increase the final hydrocarbon recovery factors. In case of using wells ## 52, 101, 201, 202 for carbon dioxide injection, the highest final hydrocarbon recovery factors are provided. The predictive gas recovery factor grows by 2.95% and the condensate recovery factor increases by 1.24% comparing to the field development for depletion.

      Originality. Basing on the research results, technological efficiency of the implementation of a carbon dioxide injection technology in terms of the reservoir of the horizon V-16of Hadiach oil and gas condensate field is determined; that is aimed at increasing the hydrocarbon recovery within the field by controlling a water flooding process in the productive formations and production wells.

      Practical implications. Application of the research results helps improve the current system of the development of productive formations of Hadiach oil and gas condensate field in terms of water drive. Implementation of such technologies stipulates the increase in final hydrocarbon recovery of the depleted fields and allows developing optimal ways of utilization of technogenic carbon dioxide in terms of the whole decarbonization process of the energy sector in Ukraine.

      Keywords: 3D model, hydrocarbon field, gas condensate reservoir, water drive, carbon dioxide injection


      REFERENCES

  1. Uiiriski, K. (2013). Ulovliuvannia ta zberihannia vuhletsiu: Ukrainski perspektyvy dlia promyslovosti ta zabezpechennia enerhetychnoi bezpeky. Oslo, Norvehiia: Mizhnarodne ekolohichne obiednannia “Billona”, 48 s.
  2. Kuzovkin, V.V. (2001). Modelirovaniye protsessov vybrosov SO2 i zakhoroneniya ugleroda pri neenergeticheskom ispol’zovanii topliva. Zashchita Okruzhayushchey Sredy v Neftegazovom Komplekse, (1), 34-38.
  3. Kudria, S.A. (2015). Stan ta perspektyvy rozvytku vidnovlyuvanoi enerhetyky v Ukraini. Visnyk NAN Ukrainy, (12), 19-26.
  4. Matkivskyi, S., & Burachok, O. (2022). Impact of reservoir heterogeneity on the control of water encroachment into gas-condensate reservoirs during CO2 injection. Management Systems in Production Engineering, 30(1), 62-68. https://doi.org/10.2478/mspe-2022-0008
  5. Kondrat, R.M., Doroshenko, V.M., & Kondrat, O.R. (2007). Osoblyvosti zavershalnoi stadii rozrobky rodovyshch nafty i hazu. Naftohazova Enerhetyka, (1), 17-21.
  6. Matkivskyi, S., & Khaidarova, L. (2021). Increasing the productivity of gas wells in conditions of high water factors. In Materials of the Eastern Europe Subsurface Conference (pp. 1-16). Kyiv, Ukraine. https://doi.org/10.2118/208564-MS
  7. Kondrat, R.M. (1992). Hazokondensatootdacha plastov. Moskva, Rossiya: Nedra, 255 s.
  8. Romi, A., Burachok, O., Nistor, M.L., Spyrou, C., Seilov, Y., Djuraev, O., & Matkivskyi, S. (2020). Advantage of stochastic facies distribution modeling for history matching of multi-stacked highly-heterogeneous field of Dnieper-Donetsk basin. Petroleum Geostatistics, (2019), 1-5. https://doi.org/10.3997/2214-4609.201902188
  9. Kondrat, R.M. (2005). Aktyvnyi vplyv na protsesy rozrobky rodo-vyshch pryrodnykh haziv z vodonapirnym rezhymom dlia zbilshennia hazokondensatovyluchennia. Nauka ta Innovatsiyi, 1(5), 12-23. https://doi.org/10.15407/scin1.05.012
  10. Boyko, V.S., Kondrat, R.M., & Yaremiychuk, R.S. (1996). Dovidnyk z naftohazovoi spravy. Lviv, Ukraina: Svit, 620 s.
  11. Rassokhin, G.V. (1997). Zavershayushchaya stadiya razrabotki gazovykh i gazokondensatnykh mestorozhdeniy. Moskva, Rossiya: Nedra, 184 s.
  12. Zakirov, S.N., Korotayev, Yu.P., Vyakhirev, R.N., Kondrat, R.M., & Gordon, V.Ya. (1981). Aktivnoe vozdeystvie na vodonapornyy rezhim s tsellyu uvelicheniya komponentootdachi plasta. Moskva, Rossiya: VNIIE Gazprom, 34 s.
  13. Zakirov, S.N. (1989). Teoriya i proyektirovanie razrabotki gazovykh i gazokondensatnykh mestorozhdeniy. Moskva-Leningrad, Rossiya: Nedra, 334 s.
  14. Matkivskyi, S., & Kondrat, O. (2021). The influence of nitrogen injection duration at the initial gas-water contact on the gas recovery factor. Eastern-European Journal of Enterprise Technologies, 1(6(109), 77-84. https://doi.org/10.15587/1729-4061.2021.224244
  15. Yeske, G.A., & Volik, A.I. (2015). Issledovanie vliyaniya zakachki vykhlopnykh gazov na koeffitsient izvlecheniya kondensata. Neftegazovoye Delo, 13(2), 94-99.
  16. Sim, S.S.K., Brunelle, P., Turta, A.T., & Singhal, A.K. (2008). Enhanced gas recovery and CO2 sequestration by injection of exhaust gases from combustion of bitumen. SPE Symposium on Improved Oil Recovery. https://doi.org/10.2118/113468-MS
  17. Sim, S.S.K., Turtata, A.T., Singhai, A.K., & Hawkins, B.F. (2008). Enhanced gas recovery: Factors affecting gas-gas dis-placement efficiency. Canada International Petroleum Conference, 1-14. https://doi.org/10.2118/2008-145
  18. Mamora, D.D., & Seo, J.G. (2002). Enhanced gas recovery by carbon dioxide sequestration in depleted gas reservoirs. SPE Technical Conference and Exhibition, 1-9. https://doi.org/10.2118/77347-MS
  19. Matkivskyi, S., & Kondrat O. (2021). Studying the influence of the carbon dioxide injection period duration on the gas recovery factor during the gas condensate fields development under water drive. Mining of Mineral Deposits, 15(2), 95-101. https://doi.org/10.33271/mining15.02.095
  20. Oldenburg, С.M., Law, D.H., Gallo, Y.L., & White, S.P (2003). Mixing of CO2 and CH4 in gas reservoirs: Code comparison studies. Greenhouse Gas Control Technologies – 6th International Conference, 443-448. https://doi.org/10.1016/B978-008044276-1/50071-4
  21. Matkivskyi, S., Kondrat, O., & Burachok, O. (2020). Investigation of the influence of the carbon dioxide (CO2) injection rate on the activity of the water pressure system during gas condensate fields development. E3S Web of Conferences, (230), 01011. https://doi.org/10.1051/e3sconf/202123001011
  22. Al-Hashami, A., Ren, S.R., & Tohidi, B. (2005). CO2 injection for enhanced gas recovery and geo-storage: Reservoir simulation and economics. All Days, 1-7. https://doi.org/10.2118/94129-MS
  23. Turta, A.T., Sim, K., Singhai, A.K., & Hawkins, B.F. (2008). Basic investigations on enhanced recovery by gas-gas displacement. Journal of Canada Petroleum Technology, 47(10), 1-6. https://doi.org/10.2118/08-10-39
  24. Holm, L.W., & O’Brien, L.J. (1971). Carbon dioxide test at the Mead-Strawn field. Journal of Petroleum Technology, 23(04), 431-442. https://doi.org/10.2118/3103-PA
  25. Malik, Q.M., & Islam, M.R. (2000). CO2 injection in the Weyburn field of Canada: Optimization of enhanced oil recovery and green-house gas storage with horizontal wells. Journal of Canada Petroleum Technology, 39(09), 1-7. https://doi.org/10.2118/00-09-01
  26. Pyo, K., Damian-Diaz, N., Powell, M., & Van Nieuwkerk, J. (2003). CO2 flooding in Joffre Viking pool. Canadian International Petroleum Conference, 1-30. https://doi.org/10.2118/2003-109
  27. Doleschall, S., Szittar, A., & Udvardi, G. (1992). Review of the 30 years’ experience of the CO2 imported oil recovery projects in Hungary. International Meeting on Petroleum Engineering. https://doi.org/10.2118/22362-MS
  28. Agustssen, H., & Grinestaff, G.H. (2004). A study of IOR by CO2 injection in the Gullfaks Field, Offshore Norway. All Days, 1-14. https://doi.org/10.2118/89338-MS
  29. Zhuze, T.P. (1981). Rol’ szhatykh gazov kak rastvoriteley. Moskva, Rossiya: Nedra, 165 s.
  30. Whitson, C.H., & Brule, M.R. (2000). Phase behavior. Richardson, United States: SPE Monograph Series. https://doi.org/10.2118/3103-PA
  31. Лицензия Creative Commons