Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Modeling the influence of rolled profile strengtheners on the arch support load-bearing capacity

Murat Baykenzhin1, Zhanar Asanova1, Zhuldyz Rashid1, Abay Kasimov1, Dina Ivadilinova1, Gulzat Zhunis1

1Karaganda Technical University, Karaganda, Kazakhstan


Min. miner. depos. 2022, 16(1):84-91


https://doi.org/10.33271/mining16.01.084

Full text (PDF)


      ABSTRACT

      Purpose.Increasing the load-bearing capacity of metal arch supports used to maintain the mine workings due to strengthening in places with the highest bending moment.

      Methods. The stress-strain state of the rock mass and support is analyzed using the ANSYS software package. The problem is studied in three variants: a support without strengtheners, a support with one strengthener in the area with the maximum bending moment, and a support with three strengtheners in the areas with the highest bending moments. To determine the bending moments and normal forces in a three-section metal arch support, the finite element method is used for specific and existing conditions, which is followed by the selection of the required standard size of the support.

      Findings. The conducted research gives reasons to believe that the proposed variant for increasing the load-bearing capacity of the support, made from a special replaceable rolled profile (SCP), can significantly improve the state of mine workings. Obviously, the proposed solution can be applied not only to arch supports, but also to other structures of rolled metal support.

      Originality. The pattern of changes in the values of internal forces arising in metal arch frame supports, depending on the deformation characteristics, the location of the strengtheners, as well as on the geometric characteristics of the mine working and the ratio of lateral and vertical loads on the support, has been determined.

      Practical implications. The proposed variant for increasing the load-bearing capacity of the support can be used to sustainably maintain mine workings in difficult mining-geological conditions of the Karaganda Coal Basin mines.

      Keywords: mine working, rock pressure, arch support, deformation, resistance, bending moment, strengthener, special replaceable profile


      REFERENCES

  1. Abdiev, A., Mambetova, R., Abdiev, A., & Abdiev S. (2020). Development of methods for assessing the mine workings stability. E3S Web of Conference, (201), 01040. https://doi.org/10.1051/e3sconf/202020101040
  2. Glushikhin, F.P., Kuznetsov, G.N., Shklyarskii, M.F., Pavlov, V.N., & Zlotnikov, M.S. (2022). Forecasting influence of geological factors on stability of mine workings. Modelling in Geomechanics, 125-141. https://doi.org/10.1201/9780203746851-8
  3. Majcherczyk, T., Niedbalski, Z., Małkowski, P., & Bednarek, Ł. (2014). Analysis of yielding steel arch support with rock bolts in mine roadways stability aspect. Archives of Mining Sciences, 59(3), 641-654. https://doi.org/10.2478/amsc-2014-0045
  4. Khomyakov, V.A., Iskakov, E.E., & Serdaliev, E.T. (2013). Investigation of gravelly soil during underground construction in Almaty. Soil Mechanics and Foundation Engineering, 50(4), 171-177. https://doi.org/10.1007/s11204-013-9230-z
  5. Matayev, A., Abdiev, A., Kydrashov, A., Musin, A., Khvatina, N., & Kaumetova, D. (2021). Research into technology of fastening the mine workings in the conditions of unstable masses. Mining of Mineral Deposits, 15(3), 78-86. https://doi.org/10.33271/mining15.03.078
  6. Sultanov, M.G., Mataev, A.K., Kaumetova, D.S., Abdrashev, R.M., Kuantay, A.S., & Orynbayev, B.M. (2020). Development of the choice of types of support parameters and technologies for their construction at the Voskhod field. Ugol, (10), 17-21. https://doi.org/10.18796/0041-5790-2020-10-17-21
  7. Sarybayev, O., Nurpeisova, M., Kyrgizbayeva, G., & Toleyov, B. (2015). Rock mass assessment for man-made disaster risk management. New Developments in Mining Engineering. Theoretical and Practical Solutions of Mineral Resources Mining, 403-409. https://doi.org/10.1201/b19901-70
  8. Arystan, I.D., Nemova, N.A., Baizbaev, M.B., Mataev, A.K. (2021). Efficiency of modified concrete in lining in underground structures. IOP Conference Series: Earth and Environmental Science, 773(1), 012063. https://doi.org/10.1088/1755-1315/773/1/012063
  9. Akhunbaev, A. (2017). Sostoyanie i perspektivy ugol’noy promyshlennosti Kazakhstana. Gorno-Metallurgicheskaya Promyshlennost’, 8(110), 1-11.
  10. Fedorov, E., Kassymkanova, K., Jangulova, G., & Miletenko, N. (2020). The influence of extensive caving zones on the state and behavior of the surface as a result of underground mining works. E3S Web of Conferences, (192), 03009. https://doi.org/10.1051/e3sconf/202019203009
  11. Korchak, A.V. (2001). Metodologiya proektirovaniya stroitel’stva podzemnykh sooruzheniy. Moskva, Rossiya: Nedra, 416 s.
  12. Steflyuk, Yu.Yu. (2017). Razrabotka tekhnologii upravleniya ustoychivost’yu konturov gornykh vyrabotok v slozhnykh gorno-tekhnicheskikh usloviyakh ekspluatatsii. Karaganda, Kazakhstan: KarGTU, 127 s.
  13. Kryshtanovych, M., Akimova, L., Akimov, O., Kubiniy, N., & Marhitich, V. (2021). Modeling the process of forming the safety potential of engineering enterprises. International Journal of Safety and Security Engineering, 11(3), 223-230. https://doi.org/10.18280/ijsse.110302
  14. Petrov, N.I., Dimitrova, K.Y., & Baskanbayeva, D.D. (2021). On the reliability of technological innovation systems. IOP Conference Series: Materials Science and Engineering, (1031), 012044. https://doi.org/10.1088/1757-899X/1031/1/012044
  15. Smirnov, A.V. (2018). Geomekhanicheskoe obosnovanie bezopasnoy tekhnologii podzemnoy dobychi uglya v neustoychivykh vmeshchayushchikh porodakh. Dissertatsiya na soiskanie uchenoy stepeni doktora tekhnicheskikh nauk. Shakhty, Rossiya: Shakhtinskiy institute, 349 s.
  16. Kizryakov, A.D. (1983). Effects of overworking on the gas characteristics of coal beds in the Karaganda basin. Soviet Mining Science, 19(1), 80-83. https://doi.org/10.1007/bf02497971
  17. Mozer, D.V., Levin, Е.L., Gey, N.I., Karaneeva, A.D., Nagibin, A.A. (2015). Monitoring of ground deformation in the territory of the Karaganda coal basin. Geodesy and Cartography, 900(6), 21-26. https://doi.org/10.22389/0016-7126-2015-900-6-21-26
  18. Kalyuzhnyy, A.S., & Zemtsovskiy, A.V. (2017). Issledovanie napryazhenno-deformirovannogo sostoyaniya massiva gornykh porod vblizi kar’yera na mestorozhdenii Oleniy Ruchey. Trudy Gornogo Instituta Kol’skogo Nauchnogo Tsentra, 278-282.
  19. Kenetayeva, A.A., Kenetayeva, Z.K., Tokusheva, Z.T., & Rabatuly, M. (2019). Methane content of coal seams of Karaganda basin. IOP Conference Series: Materials Science and Engineering, (516), 012020. https://doi.org/10.1088/1757-899x/516/1/012020
  20. Nurpeisova, M.B., Sarybaiev, O.A., & Kurmanbaiev, O.S. (2016). Study of regularity of geomechanical processes development while developing deposits by the combined way. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 30-36.
  21. Abakanov, T.D., Begalinov, A.B., & Abakanov, A.T. (2016). Seismic stability of tunnels at the Kapchagai hydropower plant. Soil Mechanics and Foundation Engineering, 53(1), 60-65. https://doi.org/10.1007/s11204-016-9365-9
  22. Zeynullin, A.A., Abeuov, E.A., Demin, V.F., Aliev, S.B., Kaynazarova, A.S., & Kaynazarov, A.S. (2021). Estimation of ways to maintain mining works based on the application of anchor anchoring in the mines of the Karaganda coal basin. Ugol’, (2), 4-9. https://doi.org/10.18796/0041-5790-2021-2-4-9
  23. Kuanyshbekovna, M.M., Krupnik, L., Koptileuovich, Y.K., Mukhtar, E., & Roza, A. (2016). The system is “roof bolting-mountain”. International Journal of Applied Engineering Research, 11(21), 10454-10457.
  24. Grotovski, U. (1981). Pour analyser des pratiques langagières. Glyukauf, (17), 35-38. https://doi.org/10.3406/lsoc.1981.1360
  25. Aykkhoff, Yu. (2008). Tekhnika i tekhnologiya ankernogo krepleniya v sisteme shtrekovoy krepi. Glyukauf, 2(3), 28-35.
  26. Grigoriev, O., Tereschuk, R., & Tokar, L. (2015). Assessment of economic efficiency AMS-A (anchor – meshwork – shotcreting) support structure in terms of coal mines. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 85-89. https://doi.org/10.1201/b19901-17
  27. Wu, X., & Tu, Z. (2017). Research of the shape of pressure arch in layered rock mass based on the Protodyakonov’s theory. Manufacturing Science and Engineering, 250-255. https://doi.org/10.2991/icmse-17.2017.45
  28. Matayev, A.K., Lozynskyi, V.H., Musin, Abdrashev, R.M., Kuantay, A.S., & Kuandykova, A.N. (2021). Substantiating the optimal type of mine working fastening based on mathematical modeling of the stress condition of underground structures. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (3), 57-63. https://doi.org/10.33271/nvngu/2021-3/057
  29. Makshankin, D.N., Gogolin, V.A., Remezov, A.V., & Bedarev, A.V. (2010). Vozmozhnost’ matematicheskogo modelirovaniya stendovykh ispytaniy arochnykh krepey. Vestnik Kuzbasskogo Gosudarstvennogo Tekhnicheskogo Universiteta, (2), 50-55.
  30. Glubokovskikh, Yu.S. (2018). Issledovanie zakonomernostey izmeneniya nesushchey sposobnosti metallicheskikh arochnykh krepey s rasklinivayushchimi elementami. Dissertatsiya na soiskanie uchenoy stepeni kandidata tekhnicheskikh nauk. Ekaterinburg, Rossiya: Uralskiy gosudarstvennyy gornyy universitet, 132 s.
  31. Begalinov, A., Almenov, T., Zhanakova, R., & Bektur, B. (2020). Analysis of the stress deformed state of rocks around the haulage roadway of the Beskempir field (Kazakhstan). Mining of Mineral Deposits, 14(3), 28-36. https://doi.org/10.33271/mining14.03.028
  32. Shashenko, A., Gapieiev, S., & Solodyankin, A. (2009). Numerical simulation of the elastic-plastic state of rock mass around horizontal workings. Archives of Mining Sciences, 54(2), 341-348.
  33. Лицензия Creative Commons