Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Choosing the flow part geometric shape of the dredge pumps for viscous fluids

Guldana Akanova1, Laila Sagatova1, Lazizjon Atakulov2, Umid Kayumov2, Muhammad Istamov2

1Satbayev University, Almaty, 50013, Kazakhstan

2Navoi State Mining Institute, Navoiy, 210100, Uzbekistan


Min. miner. depos. 2021, 15(4):75-83


https://doi.org/10.33271/mining15.04.075

Full text (PDF)


      ABSTRACT

      Purpose. Search for the possibility of increasing the efficiency of dredge pumps for viscous fluids by determining the rational values of the blade-outlet inclination angles in the pump impellers.

      Methods. During the research, the following is used: theoretical studies of the structure of the viscous fluids flowing through the flow part of dredge pumps; the method of three-dimensional software-simulation modeling of hydrodynamic processes using the Ansys software package; the methods of rational experiment planning for selecting the values of the number of points in the computational grid when optimizing the geometric parameters of the dredge pump impellers; methods of mathematical statistics and correlation analysis.

      Findings. It has been proven that the main reason for the failure of the flow part components in the dredge pumps is the manifestation of the influence of cavitation processes, which can be eliminated by changing the blade-outlet inclination angles in the pump impellers. A software-simulation complex for the automated design of the flow parts in the dredge pumps has been developed based on the use of optimization algorithms and computational fluid dynamics methods, which makes it possible to design dredge pumps with optimal characteristics that ensure their efficient operation with maximum efficiency values. It has been determined that one of the main factors influencing the head developed by dredge pumps and the efficiency value is the blade-outlet inclination angle in the pump impellers.

      Originality. Scientific novelty is in the scientific substantiation and development of a simulation-mathematical method for calculating the geometric parameters of the flow part in dredge pumps for viscous fluids at the design stage.

      Practical implications. The developed method for determining the rational blade-outlet inclination angles of the impellers in the dredge pumps for viscous fluids can be recommended to scientific-research and industrial organizations for use in the improvement, design and operation of the dredge pumps.

      Keywords: hydraulic transport, dredge pump, impeller, blade, wear, static pressure


      REFERENCES

  1. Aleksandrov, V.I. (2006). Raschet sistemy gidrotransporta khvostov obogashcheniya zheleznoy rudy na Kachkanarskom GOKe po rezultatam eksperimentov. Sbornik dokladov 13-oy Mezhdunarodnoy konferentsii “Transport i Sedimentatsiya Tverdykh Chastits”, 250-263.
  2. Beccati, N., Ferrari, C., Parma, M., & Semprini, M. (2019). Eulerian multi-phase CFD model for predicting the performance of a centrifugal dredge pump. International Journal of Computational Methods and Experimental Measurements, 7(4), 316 https://doi.org/10.2495/cmem-v7-n4-316-326
  3. Zhao, X., Luo, Y., Wang, Z., Xiao, Y., & Avellan, F. (2019). Unsteady flow numerical simulations on internal energy dissipation for a low-head centrifugal pump at part-load operating conditions. Energies, 12(10), 2013. https://doi.org/10.3390/en12102013
  4. Peng, G.J., Zhou, G.X., Fu, S.S., Ma, J.F., Huang, X., & Zhu, Q.J. (2018). Preliminary study on internal flow simulation of centrifugal dredge pump by SPH algorithm. IOP Conference Series: Earth and Environmental Science, (163), 012118. https://doi.org/10.1088/1755-1315/163/1/012118
  5. Hong, G., Jiang, J., & Yu, G.L. (2013). Numerical simulation of motion trajectory of sediment particles in dredge pump. Proceedings WODCON XX – Congress and Exhibition: The Art of Dredging.
  6. Cao, L., Wang, Z., & Zheng, L. (2019). Numerical investigation on the head and unsteady flow characteristics of a dredge pump loading high-concentration sands. 22nd World Dredging Congress, 659-667.
  7. Zhao, X., Wang, Z., Xiao, Y., & Luo, Y. (2019). Thermodynamic analysis of energy dissipation and unsteady flow characteristic in a centrifugal dredge pump under over-load conditions. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233(13), 4742-4753. https://doi.org/10.1177/0954406218824350
  8. Duarte Forero, J., Lopez Taborda, L., & Bula Silvera, A. (2019). Characterization of the performance of centrifugal pumps powered by a diesel engine in dredging applications. International Review of Mechanical Engineering, 13(1), 11-20. https://doi.org/10.15866/ireme.v13i1.16690
  9. Munts, E.A., Dasselaar, S.J., Bugdayci, H., Goeree, J.C., & Van Rhee, C. Numerical investigation of sand-water mixture behavior in a centrifugal dredge pump. 19th International Conference on Hydrotransport, 29-41.
  10. Bai, Z., Hu, X., Wang, B., Hu, Z., Yang, X., & Zhao, T. (2020). Optimization of shaft-seal water system of cutter suction dredger based on high-efficiency centrifugal separation technology. Separation and Purification Technology, (236), 116267. https://doi.org/10.1016/j.seppur.2019.116267
  11. Peng, G., Wang, Z., & Fu, S. (2015). Wear characteristics of flow parts of centrifugal dredge pump. Journal of Drainage and Irrigation Machinery Engineering, 33(12), 1013-1018.
  12. Peng, G.J., Luo, Y.Y., & Wang, Z.W. (2015). Research on wear properties of centrifugal dredge pump based on liquid-solid two-phase fluid simulations. IOP Conference Series: Materials Science and Engineering, 72(4), 042048. https://doi.org/10.1088/1757-899x/72/4/042048
  13. Aref’ev, N.N. (2015). Method for designing the impeller blade for an axial dredge pump. Power Technology and Engineering, 49(3), 186-189. https://doi.org/10.1007/s10749-015-0596-0
  14. Bugdayci, H.H., Munts, E., & Grinwis, H. (2013). Latest developments in dredge pump technology: how recent pump designs can improve the productivity of a dredge, Netherlands. Proceedings WODCON XX – Congress and Exhibition: The Art of Dredging
  15. Zhai, L.M., Cao, L., Cao, J.W., Lei, H.M., Ahn, S.H., Chen, F.N., Luo, Y.Y., Xiao, Y.X., & Wang, Z.W. (2019). Numerical analysis of rotor dynamics of dredge pump shafting. IOP Conference Series: Earth and Environmental Science, (627), 012015. https://doi.org/10.25103/jestr.133.02
  16. Gutierrez, J.C., Ochoa, J.V., & Forero, J.D. (2020). Parametric analysis CFD of the hydraulic performance of a centrifugal pump with applications to the dredging industry. Journal of Engineering Science and Technology Review, 13(3), 8-14. https://doi.org/10.25103/jestr.133.02
  17. Shuang, J., Fusheng, N., & Ting, L. (2019). Research on the multi-loop control system for swing process of cutter suction dredger. Proceedings of the 2019 4th International Conference on Automation, Control and Robotics Engineering. https://doi.org/10.1145/3351917.3351968
  18. Mingming, L., Haifei, Z., & Tao, G. (2019). Numerical analysis and test of shaft water seal with dredge pump. 22nd World Dredging Congress.
  19. Baranov, Yu.D., Blyus, B.A., Semenenko, E.V., & Shurygin, V.D. (2006). Obosnovanie parametrov i rezhimov raboty sistem gidrotransporta gornykh predpriyatiy. Dnepropetrovsk, Ukraina: Institut geotekhnicheskoy mekhaniki imeni N.S. Polyakova, 416 s.
  20. Zavertkin, P.S. (2009). Povyshenie resursa gruntovykh nasosov snizheniem intensivnosti gidroabrazivnogo iznashivaniya ikh elementov v sistemakh gidrotransporta khvostov obogashcheniya. Dissertatsiya na soiskanie stepeni kandidata tekhnicheskikh nauk. Sankt-Peterburg, Rossiya, 115 s.
  21. Lomakin, V.O. (2017). Razrabotka kompleksnogo metoda rascheta protochnykh chastey tsentrobezhnykh nasosov s optimizatsiey parametrov. Dissertatsiya na soiskanie stepeni doktora tekhnicheskikh nauk. Moskva, Rossiya, 250 s.
  22. Kharchuk, S.I., Boldyrev, A.V., & Zhizhin, S.M. (2009). Raschet napornoy kharakteristiki tsentrobezhnogo nasosa chislennym metodom. Vestnik UGATU, 12(2), 51-58.
  23. Bacharoudis, E.C., Filios, A.E., Mentzos, M.D., & Margaris, D.P. (2008). Parametric study of a centrifugal pump impeller by varying the outlet blade angle. The Open Mechanical Engineering Journal, 2(1), 75-83. https://doi.org/10.2174/1874155x00802010075
  24. Akhras, M., El Hajem, R., Morel, J.Y. (2001). The internal flow investigation of a centrifugal pump. Journal of Visualization, 91-98.
  25. Suhane, A. (2012). Experimental study on centrifugal pump to determine the effect of radial clearance on pressure pulsations, vibrations and noise. International Journal of Engineering Research and Applications, 2(4), 1823-1829.
  26. Peng, G.J., Zhou, G.X., Fu, S.S., Ma, J.F., Huang, X., & Zhu, Q.J. (2018). Preliminary study on internal flow simulation of centrifugal dredge pump by SPH algorithm. IOP Conference Series: Earth and Environmental Science, (163), 012118. https://doi.org/10.1088/1755-1315/163/1/012118
  27. Aref’ev, N.N., & Yakovlev, S.G. (1988). Results of studies on a model of an axial-flow pump with screw impeller and hydrodynamic seal. Trudy GIIVT, (231).
  28. Matsumoto, S., Ohba, H., & Miyamoto, H. (2001). An analysis of flow in a centrifugal impeller by FEM with k-ε model. Journal of Thermal Science, 10(1), 7-13. https://doi.org/10.1007/s11630-001-0002-0
  29. CFD – BladeGen, Version 3.2. (2000). Users’s Guide. AEA Technology Engineering Software Inc.
  30. CFX – TurboGrid, Version 1.5. (2000). Software Documentation, User Manual. AEA Technology Engineering Software, Ltd.
  31. Kurbonov, O.M., & Atakulov, L.N. (2020). Issledovanie po povysheniyu rabotosposobnosti nasosnogo oborudovaniya. Journal of Advances in Engineering Technology, 1(1), 21-24
  32. Лицензия Creative Commons