Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Assessment of the factors influencing on the formation of energy-oriented modes of electric power consumption by water-drainage installations of the mines

Oleg Sinchuk1, Igor Sinchuk1, Tetyana Beridze1, Yulii Filipp1, Kyrylo Budnikov1, Oleg Dozorenko1Ryszard Strzelecki2

1Kryvyi Rih National University, Kryvyi Rih, 50027, Ukraine

2Gdańsk University of Technology, Gdańsk, 80-233, Poland


Min. miner. depos. 2021, 15(4):25-33


https://doi.org/10.33271/mining15.04.025

Full text (PDF)


      ABSTRACT

      Purpose. Performing the analysis to determine energy-efficient modes and assess the characteristics of the main indicators of electric power consumption by mine water-drainage installations based on the developed research mathematical model.

      Methods. To achieve the purpose set, a methodology is used to develop the multiple multifactor correlation-regression modeling with respect to the modes of electric power consumption by electrical and mechanical complexes of mine water-drainage installations. The amount of consumed electric power is found as an effective feature. The expediency of using the nonlinear multiple regression analytical ratios has been substantiated during the model development. A comparative analysis of a multiple multifactor regression model, presented in the form of a power and linear function, has been performed.

      Findings. The research results make it possible to determine that the greatest influence on the electric power consumption is made by water inflow, and the smallest influence – by the depth of water pumping from underground horizons. The expediency of using a multiple multifactor regression model in the form of a power function has been substantiated. The elaborated quantitative values of the factors of electric power consumption by electrical and mechanical complexes of mine water-drainage installations have become the basis for the introduction of innovative technological solutions at the relevant iron ore enterprises to optimize the cost characteristics of the electric power consumption.

      Originality. For the first time for the analysis and assessment of the operating modes of the main water-drainage installations of mines, the use of mathematical modeling based on the multiple correlation-regression method is proposed. The developed model takes into account a complex of technological parameters of influence on the water-pumping process. The analysis of the proposed model makes it possible to identify significant factors influencing the modes of electric power consumption by electrical and mechanical complexes of water-drainage installations in the mines and to conduct water-drainage assessment for constructing an algorithm for optimal control of this process in the cost-target direction.

      Practical implications. The research tactics are proposed for determining the energy-efficient operating modes of the main water-drainage installations of the mines by the method of mathematical modeling. The analysis of the obtained results of mathematical and statistical modeling makes it possible to take into account the complex of technological parameters of the influence on the water-pumping process, to identify and assess the modes of electric power consumption by the main water-drainage installations, as well as to obtain the initial data for the development of the structure of the control algorithm for mine stationary installations of this type in the cost-target aspect.

      Keywords: indicator, regression, model, electric power consumption, water-drainage installations


      REFERENCES

  1. Shydlovskyi, A.K., Pivniak, H.H., Rohoza, M.V., & Vypanasenko, S.I. (2007). Heoekonomika ta heopolityka Ukrainy. Dnipropetrovsk, Ukraina: Natsionalnyi hirnychyi universytet, 282 p.
  2. Stratehiia staloho rozvytku “Ukraina – 2020”. (2017). Rozporiadzhennia Kabinetu Minsistriv Ukrainy #605-r vid 18 serpnia 2017 roku. Kyiv, Ukraina: Kabinet Minsistriv Ukrainy.
  3. Vilkul, Yu., Azaryan, A., Kolosov, V., Karamanyts, F., & Batareev, A. (2017). Suchasnyy stan zalizorudnoyi haluzi, prohnoz rozvytku ta propozytsiyi. Sbornik Nauchnykh Trudov “Kachestvo Mineral’nogo Syr’ya”, 9-24.
  4. Babets, Ye., Melnikova, I., Grebenyuk, S., & Lobov, V. (2015). Doslidzhennya tekhniko-ekonomichnykh pokaznykiv hirnychodobuvnykh pidpryyemstv Ukrayiny ta efektyvnosti yikh roboty v umovakh zminnoyi ko’yuktury svitovoho rynku zalizorudnoyi syrovyny. Multi-authored monograph. Kryvyi Rih, Ukraina: NDGRI DVNZ “KNU”, 391 p.
  5. Riabets, V.V., Dolhyi, A.S., & Tarasiutin, V.M. (2012). Pidhotovka ta vidpratsiuvannia pryrodno-bahatykh zalizorudnykh pokladiv v umovakh hlybokykh horyzontiv. Stalyi Rozvytok Promyslovosti ta Suspilstva, (1).
  6. Stupnik, M.I., Fedko, M.B., & Pysmennyi, S.V. (2018). Problemy rozkryttia ta pidhotovky rudnykh rodovyshch na hlybokykh horyzontakh shakht Kryvbasu. Visnyk Kryvorizkoho Natsionalnoho Universytetu, (47), 3-8. https://doi.org/10.31721/2306-5451-2018-1-47-3-8
  7. Kaplenko, Yu.P., & Yanov, E.K. (2006). Vliyanie glubiny gornykh rabot na tekhniko-ekonomicheskie pokazateli podzemnoy dobychi rudy. Vіsnyk KTU, 5(15), 25-28.
  8. Sinchuk, O., Kupin, A., Sinchuk, I., Rohoza, M., & Plіeshkov, P. (2020). Certain aspects concerning the development of a functioning scheme of the auto-mated system to control energy flows of underground iron-ore enterprises. Mining of Mineral Deposits, 14(3), 101-111. https://doi.org/10.33271/mining14.03.101
  9. Dremin, A.A. (2006). Strategiya energosberezheniya pri dobyche i pererabotke zheleznykh rud. Gornyy Zhurnal, (12), 45-47.
  10. Prakhovnik, A.V., Rozen, V.P., & Degtyarev, V.V. (1985). Energosberegayushchie rezhimy elektrosnabzheniya gornodobyvayushchikh predpriyatiy. Moskva, Rossiya: Nedra, 232 s.
  11. Volynets, V.I. (2012). Analiz efektyvnosti spozhyvannia elektroenerhii vuhilnymy shakhtamy. Enerhetychna Bezpeka Navkolyshnoho Seredovyshcha, 35-36.
  12. Sinchuk, I.O., Karamanyts, F.I., & Osadchuk, Yu.G. (2019). Electric engineering of iron ore underground enterprises. Current status and prospects. Multi-authored monograph. Warsaw, Poland: iScience Sp. z o. o, 77 p.
  13. Sinchuk, I. (2019). Introduction to the formation of the basic structure of the algorithm for the control of electric energy flows in iron ore mines. 2019 IEEE International Conference on Modern Electrical and Energy Systems (MEES). https://doi.org/10.1109/mees.2019.8896426
  14. Sinchuk, I., Boiko, S., Baranovska, М., Kozakevich, I., Syomochkyn, А., Kalmus, D., Peresunko, I., Vinnik, М., Lokhman, N., & Chorna, V. (2019). Brief commentaries on the problem of power consumption management at iron ore underground mines. Multi-authored monograph. Warsaw, Poland: iScience, 96 p.
  15. Sinchuk, O., Kupin, A., Sinchuk, I., Dozorenko, O., & Krasnopolsky, R. (2020). Algorithms design for fuzzy control by power streams in conditions of underground extraction of iron ore. IEEE 7th International Conference on Energy Smart Systems (ESS), 330-334. https://doi.org/10.1109/ESS50319.2020.9160168
  16. Shevchuk, S.P. (1992). O vliyanii vnepikovogo upravleniya elektropotrebleniem vodootliva gornykh predpriyatiy na dopustimoe vremya pereryva v ego rabote. Vestnik KPI “Seriya Gornoy Elektromekhaniki i Avtomatiki”, (23), 34-38.
  17. Kholomenyuk, M.V. (2007). Methods of calculations for pump stations of mining enterprises: Methodological guidelines for mechanical engineering students. Dnipro, Ukraine: National Mining University.
  18. Razumnyy, Yu.T., & Il’chenko, E.S. (2004). Problemy ispol’zovaniya vodootlivnykh ustanovok ugol’nykh shakht v kachestve protrebiteley-regulyatorov. Gіrnycha Elektromekhanіka ta Avtomatyka, (73).
  19. Rycroft, M. (2017). Small pumped water storage systems: A new partner for renewable energy. Technology & Business for Development. Retrieved from: https://www.ee.co.za/article/small-pumped-water-storage-systems-new-partner-renewable-energy.html
  20. Pujades, E., Orban, Ph., Bodeux, S., Archambeau, P., Erpicum, S., & Dassargues, A. (2017). Underground pumped storage hydropower plants using open pit mines: How do groundwater exchanges influence the efficiency. Applied Energy, (190), 135-146.https://doi.org/10.1016/j.apenergy.2016.12.093
  21. McKinstry, L. (2020). Moriah hydro project proceeds. Retrieved from: http://www.processrepublican.com/news/localnews
  22. V Germanii ugol’nuyu shakhtu prevratyat v gidroakkumuliruyushchuyu elektrostantsiyu. (2019). Retrieved from:https://geektimes.ru/post/287320/
  23. Tolmachov, S.T., & Ilchenko, O.V. (2017). Optymizatsiia rezhymiv roboty nasosnykh ustanovok holovnoho vodovidlyvu shakht za kryteriiem minimumu vartosti elektroenerhii. Visnyk KNU, (44), 137-142.
  24. Sinchuk, O., Sinchuk, I., Kozakevych, I., Fedotov, V., Serebrenikov, V., Lokhman, N., Beridze, T., Boiko, S., Pyrozhenko, A., & Yalova А. (2018). Development of the functional model to control the levels of electricity consumption by underground iron-ore enterprises. Eastern-European Journal of Enterprise Technologies, 6(3(96), 20-27. https://doi.org/10.15587/1729-4061.2018.148606
  25. Toporkova, O.A., & Savchuk, L.M. (2015). Formuvannia intehrovanoi systemy upravlinnia enerhovytratamy na trubnomu pidpryiemstvi. Ekonomichnyi Visnyk, (23), 101-109.
  26. Bodianskyi, Ye.V., Kucherenko, Ye.I., Mykhalov, O.I., Filatov, V.O., Hasyk, M.M., & Kutsyn, V.S. (2011). Metody obchysliuvalnoho intelektu v systemakh keruvannia tekhnolohichnymy protsesamy ferosplavnoho vyrobnytstva. Dnipropetrovsk, Ukraina: NmetAU, 419 s.
  27. Pearson, J. (1966). Decomposition, coordination, and multilevel systems. IEEE Transactions on Systems Science and Cybernetics, 2(1), 36-40. https://doi.org/10.1109/tssc.1966.300076
  28. Лицензия Creative Commons