Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Theoretical basis for the formation of damaging factors during the coal aerosol explosion

Olena Zavialova1, Viktor Kostenko1, Natalia Liashok1, Mykola Grygorian2, Tetiana Kostenko2, Viktor Pokaliuk2

1Donetsk National Technical University, Donetsk, 85300, Ukraine

2Cherkasy Institute of Fire Safety named after Chornobyl Heroes of National University of Civil Defense of Ukraine, Cherkasy, 18034, Ukraine


Min. miner. depos. 2021, 15(4):130-138


https://doi.org/10.33271/mining15.04.130

Full text (PDF)


      ABSTRACT

      Purpose. Assessing the process of damaging factors formation during the coal aerosol explosion in mine workings on the basis of theoretical research of the explosion of coal dust deposits in order to substantiate promising methods of protecting miners from their impact.

      Methods. An integrated approach is used, which includes a critical analysis of literature data on the occurrence and development of coal aerosol explosions in mine workings; theoretical research into the state of the gaseous medium at the characteristic points of the development diagram of the coal dust deposits explosion as a result of mining operations based on the laws of classical physics and chemistry.

      Findings. The main aspects of the explosion mechanism of dust in a powdery state, accumulated on the surfaces along the mine working perimeter, and the formation of such negative factors as the effect of gaseous medium accelerated movement, have been revealed; high temperature formed during coal and methane detonative combustion; increased gas pressure. The revealed aspects of the dust explosion mechanism make it possible to determine the main directions for protection of miners caught in the explosion. The diagram of the development of settled coal dust explosion along the mine working with normal ventilation conditions, taking into account the influence of seismic waves, has been improved.

      Originality. Analytical dependences, reflecting the value of gas energy at characteristic points of the diagram, have been determined, and the dynamics of the formation of negative factors caused by the explosion have been revealed.

      Practical implications. Possible ways of protecting miners from the impact of negative factors caused by the coal aerosol explosion and reducing the severe consequences of such accidents are proposed.

      Keywords: explosion, coal dust, flame front, shock wave, seismic waves, damaging factors, miners’ protection


      REFERENCES

  1. Kostenko, V., Zavialova, O., Krupka, A., Duz, L., & Kraliuk, M. (2020). Tactics of elimination of consequences of the gas-dust mixture explosions in mining workins of coal mines. Scientific Bulletin of Donetsk National Technical University, 1(4)-2(5), 37-51. https://doi.org/10.31474/2415-7902-2020-1(4)-2(5)-37-51
  2. Kostenko, V., Gamiy, Y., Kostenko, T., Tsvirkun, S., & Udovenko, M. (2021). Dynamics of motion of gases from a source of spontaneous combustion of coal in mine workings. Rudarsko-Geološko-Naftni Zbornik, 36(2), 109-117. https://doi.org/10.17794/rgn.2021.2.10
  3. Romanchenko, S.B., & Kosterenko, V.M. (2018). Polnomasshtabnye issledovaniya vzryvov ugol’noy pyli i kriterii effektivnosti sredstv lokalizatsii. Vestnik Nauchnogo Tsentra po Bezopasnosti Rabot v Ugol’noy Promyshlennosti, (4), 6-20.
  4. Bryukhanov, A.M. (2004). Rassledovanie i predotvrashchenie avariy na ugol’nykh shakhtakh. Chast’ 1. Donetsk, Ukraina: Nord-Press, 548 s.
  5. Lin, S., Liu, Z., Wang, Z., Qian, J., & Gu, Z. (2020). Flame characteristics in a coal dust explosion induced by a methane explosion in a horizontal pipeline. Combustion Science and Technology. https://doi.org/10.1080/00102202.2020.1777548
  6. Li, H., Deng, J., Chen, X., Shu, C.-M., Kuo, C.-H., Zhai, X., & Hu, X. (2020). Qualitative and quantitative characterisation for explosion severity and gaseous-solid residues during methane-coal particle hybrid explosions: An approach to estimating the safety degree for underground coal mines. Process Safety and Environmental Protection, (141), 150-166. https://doi.org/10.1016/j.psep.2020.05.033
  7. Pinaev, A.V., & Pinaev, P.A. (2020). Combustion and detonation waves in gas mixtures of CH4/Air, CH4/O2, and O2/Coal dust. Combustion, Explosionand Shock Waves, 56(6), 670-681. https://doi.org/10.1134/S0010508220060064
  8. Guo, C., Shao, H., Jiang, S., Wang, Y., Wang, K., & Wu, Z. (2020). Effect of low-concentration coal dust on gas explosion propagation law. Powder Technology, (367), 243-252. https://doi.org/10.1016/j.powtec.2020.03.045
  9. Zhu, Z., Wang, H., & Zhou, J. (2020). Monitoring and control model for coal mine gas and coal dust. Chemistry and Technology of Fuelsand Oils, 56(3), 504-515. https://doi.org/10.1007/s10553-020-01161-3
  10. Jiang, H., Bi, M., & Gao, W. (2020). Suppression mechanism of al dust explosion by melamine polyphosphate and melamine cyanurate. Journal of Hazardous Materials, (386). https://doi.org/10.1016/j.jhazmat.2019.121648
  11. Niu, Y., Zhang, L., & Shi, B. (2020). Experimental study on the explosion-propagation law of coal dust with different moisture contents induced by methane explosion. Powder Technology, (361), 507-511. https://doi.org/10.1016/j.powtec.2019.11.089
  12. Moradi, H., Sereshki, F., Ataei, M., & Nazari, M. (2020). Evaluation of the effect of the moisture content of coal dust on the prediction of the coal dust explosion index. Rudarsko-Geološko-Naftni Zbornik, 35(1), 37-47. https://doi.org/10.17794/rgn.2020.1.4
  13. Pejic, L.M., Torrent, J.G., Añez, N.F., & Escobar, J.M.M. (2017). Prevention and protection against propagation of explosionsin underground coal mines. Journal of Mining Institute, (225), 307-312. https://doi.org/10.18454/pmi.2017.3.307
  14. Kusainov, P.I., Mazepa, E.E., Kraynov, Yu.A., & Lukashov, Yu.O. (2021). Considering the settling of dispersed water in the water barrier when calculating the explosion-proof distance at the methane explosion in a mine. Journal of Physics: Conference Series, 1749(1). https://doi.org/10.1088/1742-6596/1749/1/012042
  15. Kudryashov, V.V., Kubrin, S.S., Kosterenko, V.N., & Tereshkin, A.I. (2020). Problems of dust control in coal mines. Mining Informational and Analytical Bulletin, 2020(1), 89-98. https://doi.org/10.25018/0236-1493-2020-1-0-89-98
  16. Perera, I.E., Harris, M.L., Sapko, M.J., Dyduc, Z., Cybulski, K., Hildebrandt, R., & Goodman, G.V.R. (2020). Large-scale explosion propagation testing of treated and non-treated rock dust when overlain by a thin layer of coal dust. 2020 SME Annual Conference and Expo. https://doi.org/10.1007/s42461-020-00373-9
  17. Huang, Q., & Honaker, R. (2016). Optimized reagent dosage effect on rock dust to enhance rock dust dispersion and explosion mitigation in underground coal mines. Powder Technology, (301), 1193-1200. https://doi.org/10.1016/j.powtec.2016.08.004
  18. Vogt, E. (2011). Hydrophobized limestone powder as an antiexplosive agent. Polish Journal of Environmental Studies, 20(3), 801-804.
  19. Qian, J., Liu, Z., Lin, S., Li, X., & Ali, M. (2020). Study on microstructure characteristics of material evidence in coal dust explosion and its significance in accident investigation. Fuel, (265), 116992. https://doi.org/10.1016/j.fuel.2019.116992
  20. Lin, S., Liu, Z., Qian, J., & Li, X. (2019). Comparison on the explosivity of coal dust and of its explosion solid residues to assess the severity of re-explosion. Fuel, (251), 438-446. https://doi.org/10.1016/j.fuel.2019.04.080
  21. Medich, L.M., Torrent, Kh.G., An’yez, N.F., & Eskobar, Kh.M.M. (2017). Predotvrashchenie rasprostraneniya vzryvov metana i pyli v ugol’nykh shakhtakh. Zapiski Gornogo Instituta, (225), 307-312. https://doi.org/10.18454/RM1.2017.3.307
  22. Romanchenko, S.B., & Trubitsyn, A.A. (2019). Mikroskopicheskiy metod analiza stepeni uchastiya pyli vo vzryvakh. Vestnik Nauchnogo Tsentra po Bezopasnosti Rabot v Ugol’noy Promyshlennosti, (3), 6-16.
  23. Kostenko, V., Liashok, Ya., Zavialova, O., Pozdieiev, S., & Kostenko, T. (2020) The deformation dynamics of the experimental adit’s material during a coal dust explosion. Eastern-European Journal of Enterprise Technologies, 4(7(106)), 54-62. https://doi.org/10.15587/1729-4061.2020.209409
  24. Romanchenko, S.B., & Devlikanov, M.O. (2019). Vliyanie dispersnogo sostava pyli na pokazateli vzryvoopasnosti. Vestnik Nauchnogo Tsentra po Bezopasnosti Rabot v Ugol’noy Promyshlennosti, (2), 22-28.
  25. Cybulski, W. (1973). Wybuchy pylu weglowego i ich zwalczanie. Katowice, Polska: Slask, 451 s.
  26. Lebecki, K. (2004). Zagrożenia pyĺowe w górnictwie. Кatowice, Polska: Gĺowny Instytut Górnictwa, 399 s.
  27. Kostenko, V.K., Zavialova, O.L., Lyashok, Ya.O., Kostenko, T.V., & Tavrel’, M.I. (2020). Prystrіi dlia lokalіzatsіi vybukhіv vuhіlnoho pylu. Patent #143877. Ukraina.
  28. Лицензия Creative Commons