Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Substantiation of resource-saving technology when mining the deposits for the production of crushed-stone products

Oleksii Cherniaiev1, Artem Pavlychenko1, Oleksandr Romanenko2, Yurii Vovk3

1Dnipro University of Technology, Dnipro, 49005, Ukraine

2Ukrainian Academy of Mining Sciences, Kryvyi Rih, 50002, Ukraine

3National University of Water and Environmental Engineering, Rivne, 33028, Ukraine


Min. miner. depos. 2021, 15(4):99-107


https://doi.org/10.33271/mining15.04.099

Full text (PDF)


      ABSTRACT

      Purpose. Scientific substantiation of the expedient depth of mining the non-metallic deposits of rocky minerals on the basis of mathematical and statistical methods, which will ensure resource-saving and rational use of natural resources.

      Methods. To solve the purpose set, the following methods are used: graphical-analytical – when optimizing the maximum depth of mining the deposits of building materials, and the method of mathematical modeling – for determining the maximum depth of mining the non-metallic deposits with internal dumping. By means of statistical processing according to systematized types of deposits, the patterns of a change in the maximum depth of mining the basic deposits, depending on the main parameters of the quarry field, have been studied.

      Findings. A new methodology, which is distinguished by taking into account in-pit dumping, has been developed for calculating the maximum depth of granite quarries, which most of all influences the efficiency of mining operations and the value of economic indicators while ensuring the maximum economic effect with the achievement of a rational maximum depth of mining the deposit. A new, theoretically substantiated methodology has been created for determining the maximum depth of mining the mineral deposits for the production of crushed-stone products while providing the resource- and land-saving during the quarry operation.

      Originality. For the first time for these deposits, the dependence of their maximum mining depth on the main parameters of the quarry field and the place of internal dumping of overburden rocks has been determined. This has become a determining factor in the appropriate mining of deep non-metallic deposits of building materials with internal dumping, which provides a minimal land disturbance.

      Practical implications. The research results have been tested and implemented in working projects for mining the Liubymivske, Chaplynske, Pervomaiske, Mykytivske, Trykratske and Novoukrainske granite deposits; as a result of additional mining of mineral reserves, their additional increment in the volume from 1 to 48 million m3 is possible, which will ensure 5-40 years of sustainable operation of the mining enterprise.

      Keywords: non-metallic quarries, quarry mining plan, depth of dumping, in-pit dumping, maximum mining depth


      REFERENCES

  1. Perederij, V. (2001). Clay mineral composition and palaeoclimatic interpretation of the Pleistocene deposits of Ukraine. Quaternary International, (76-77), 113-121. https://doi.org/10.1016/s1040-6182(00)00095-1
  2. Klimchouk, A.B. (1997). The role of karst in the genesis of sulfur deposits, Pre-Carpathian region, Ukraine. Environmental Geology, 31(1-2), 1-20. https://doi.org/10.1007/s002540050158
  3. Dryzhenko, A., Moldabayev, S., Shustov, A., Adamchuk, A., & Sarybayev, N. (2017). Open pit mining technology of steeply dipping mineral occurences by steeply inclined sublayers. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, 17(13), 599-606. https://doi.org/10.5593/sgem2017/13/s03.076
  4. Medvedieva, O., Lapshyn, Y., Koval, N., Zeynullin, A., & Gupalo, O. (2020). The resource-saving technology to restore the accumulation ability of tailing ponds. E3S Web of Conferences, (168), 00054. https://doi.org/10.1051/e3sconf/202016800054
  5. Menshov, O., Spassov, S., Camps, P., Vyzhva, S., Pereira, P., Pastushenko, T., & Demidov, V. (2020). Soil and dust magnetism in semi-urban area Truskavets, Ukraine. Environmental Earth Sciences, (79), 1-10. https://doi.org/10.1007/s12665-020-08924-5
  6. Menshov, O., Kruglov, O., Vyzhva, S., Horoshkova, L., Pereira, P., Pastushenko, T., & Dindaroglu, T. (2021). Landscape position effects on magnetic properties of soils in the agricultural land Pechenigy, Ukraine. Earth Systems and Environment, 1-12. https://doi.org/10.1007/s41748-021-00240-7
  7. Pivnyak, G.G., Gumenik, I.L., Drebenshtedt, C., & Panasenko, A.I. (2011). Nauchnyie osnovy ratsyonalnogo prirodopolzovaniya pri otkrytoy razrabotke mestorozhdeniy. Dnepropetrovsk, Ukraina: NMU.
  8. Stupnik, M., Kolosov, V., Pysmennyi, S., & Kostiantyn, K. (2019). Selective mining of complex stuctured ore deposits by open stope systems. E3S Web of Conferences, (123), 01007. https://doi.org/10.1051/e3sconf/201912301007
  9. Naduty, V., Malanchuk, Z., Malanchuk, Y., & Korniyenko, V. (2016). Research results proving the dependence of the copper concentrate amount recovered from basalt raw material on the electric separator field intensity. Eastern-European Journal of Enterprise Technologies, 5(5(83)), 19-24. https://doi.org/10.15587/1729-4061.2016.79524
  10. Khomenko, O.Ye. (2012). Implementation of energy method in study of zonal disintegration of rocks. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 44-54.
  11. Pivniak, H.H., Pilov, P.I., Pashkevych, M.S., & Shashenko, D.O. (2012). Synchro-mining: Civilized solution of problems of mining regions’ sustainable operation. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (3), 131-138.
  12. Malanchuk, Z., Zaiets, V., Tyhonchuk, L., Moshchych, S., Gayabazar, G., & Dang, P.T. (2021). Research of the properties of quarry tuff-stone for complex processing. E3S Web of Conferences, (280), 01003. https://doi.org/10.1051/e3sconf/202128001003
  13. Bitimbaev, M.Z., Krupnik, L.A., Aben, E.K., & Aben, K.K. (2017). Adjustment of backfill composition for mineral mining under open pit bottom. Gornyi Zhurnal, (2), 57-61. https://doi.org/10.17580/gzh.2017.02.10
  14. Kyrgizbayeva, G., Nurpeisov, M., & Sarybayev, O. (2015). The monitoring of earth surface displacements during the subsoil development. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 161-167. https://doi.org/10.1201/b19901-30
  15. Kalybekov, T., Rysbekov, K., & Zhakypbek, Y. (2015). Efficient land use in open-cut mining. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 287-291. https://doi.org/10.1201/b19901-51
  16. Baibatsha, A., Dyussembayeva, K., & Bekbotayeva, A. (2016). Study of tails enrichment factory Zhezkazgan as a technogenic ore deposits. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, (1), 579-586. https://doi.org/10.5593/sgem2016/b11/s01.073
  17. Pavlychenko, A., & Kovalenko, A. (2013). The investigation of rock dumps influence to the levels of heavy metals contamination of soil. Annual Scientific-Technical Collection – Mining of Mineral Deposits, 237-238. https://doi.org/10.1201/b16354-43
  18. Gorova, A., Pavlychenko, A., & Borysovs’ka, O. (2013). The study of ecological state of waste disposal areas of energy and mining companies. Annual Scientific-Technical Collection – Mining of Mineral Deposits, 169-172. https://doi.org/10.1201/b16354-29
  19. Malanchuk, Z., Malanchuk, Y., Korniyenko, V., & Ignatyuk, I. (2017). Examining features of the process of heavy metals distribution in technogenic placers at hydraulic mining. Eastern-European Journal of Enterprise Technologies, 1(10(85)), 45-51. https://doi.org/10.15587/1729-4061.2017.92638
  20. Taran, I.A. (2012). Laws of power transmission on branches of double-split hydrostatic mechanical transmissions. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 69-75.
  21. Bondarenko, V.I., Samusya, V.I., Smolanov, S.N. (2005). Mobile lifting units for wrecking works in pit shafts. Gornyi Zhurnal, (5), 99-100.
  22. Taran, I.A. (2012). Interrelation of circular transfer ratio of double-split transmissions with regulation characteristic in case of planetary gear output. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (3), 78-85.
  23. Simonenko, V.I. (2004). Razrabotka energosberegayushchey tekhnologii dobychi skal’nykh nerudnykh poleznykh iskopaemykh Ukrainy. Dissertatsiya doktora tekhnicheskikh nauk. Dnepropetrovsk, Ukraina: NGU.
  24. Anisimov, O., Symonenko, V., Cherniaiev, O., & Shustov, O. (2018). Formation of safety conditions for development of deposits by open mining. E3S Web of Conferences, (60), 00016. https://doi.org/10.1051/e3sconf/20186000016
  25. Lyashenko, V.I., Dyatchin, V.Z., & Lisovoy, I.A. (2018). Increase of environmental safety of mining production on the basis of waste utilization of extraction and processing of ore raw materials. Ecology and Industry of Russia, 22(4), 4-10. https://doi.org/10.18412/1816-0395-2018-4-4-10
  26. Baibatsha, A., Dussembayeva, K., Bekbotayeva, A., & Abdullayeva, М.T. (2018). Tails of enrichment factories as the technogenic mineral resources. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, 18(1), 519-526.https://doi.org/10.5593/sgem2018/1.1/s01.066
  27. Lyashenko, V. (2018). Safety improving of mine preparation works at the ore mines. Bezopasnost’ Truda v Promyshlennosti, (5), 53-59. https://doi:10.24000/0409-2961-2018-5-53-59
  28. Strilets, О., Pcholkin, G., & Oliferuk, V. (2015). Monitoring of mass blasting seismic impact on residencial buildings and constructions. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 533-535. https://doi.org/10.1201/b19901-91
  29. Simonenko, V.I. (2016). Rozrobka ekolohobezpechnykh tekhnolohii vedennia hirnychykh robit z urakhuvanniam potreb v likvidatsii ta konservatsii hirnychodobuvnykh pidpryiemstv. Zvit #DR 0115U002301. Dnipropetrovsk, Ukraina: Natsionalnyi hirnychyi universytet.
  30. Cherniaiev, O.V. (2017). Systematization of the hard rock non-metallic mineral deposits for improvement of their mining technologies. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 11-17.
  31. Gorova, A., Pavlychenko, A., Kulyna, S., & Shkremetko, O. (2012). Ecological problems of post-industrial mining areas. Geomechanical Processes During Underground Mining, 35-40. https://doi.org/10.1201/b13157-7
  32. Dychkovskyi, R., Vladyko, O., Maltsev, D., & Cabana, E.C. (2018). Some aspects of the compatibility of mineral mining technologies. Rudarsko-Geološko-Naftni Zbornik, 33(4), 73-82. https://doi.org/10.17794/rgn.2018.4.7
  33. Falshtynskyi, V.S., Dychkovskyi, R.O., Lozynskyi, V.G., & Saik, P.B. (2013). Determination of the technological parameters of borehole underground coal gasification for thin coal seams. Journal of Sustainable Mining, 12(3), 8-16. https://doi.org/10.7424/jsm130302
  34. Kieush, L., Boyko, M., Koveria, A., Yaholnyk, M., & Poliakova, N. (2020). Manganese sinter production with wood biomass application. Key Engineering Materials, (844), 124-134. https://doi.org/10.4028/www.scientific.net/kem.844.124
  35. Saik, P., Petlovanyi, M., Lozynskyi, V., Sai, K., & Merzlikin, A. (2018). Innovative approach to the integrated use of energy resources of underground coal gasification. Solid State Phenomena, (277), 221-231. https://doi.org/10.4028/www.scientific.net/SSP.277.221
  36. Shustov, O., Pavlychenko, A., Bondarenko, A., Bielov, O., Borysovska, O., & Abdiev, A. (2021). Substantiation into parameters of carbon fuel production technology from brown coal. Materials Science Forum, (1045), 90-101. https://doi.org/10.4028/www.scientific.net/MSF.1045.90
  37. Shlain, B.I. (1985). Razrabotka mestorozhdeniy nerudnogo syr’ya. Moskva, Rossiya: Nedra, 344 s.
  38. Symonenko, V.I. (2011). Tekhnolohichni osnovy ekoloho- i enerhozberihaiuchoho vyrobnytstva pry vydobutku tverdoi nerudnoi syrovyny v mezhakh sanitarno-zakhysnykh zon. Zvit #DR 011U000532. Dnipropetrovsk, Ukraina: Natsionalnyi hirnychyi universytet.
  39. Shustov, O.O., Haddad, J.S., Adamchuk, A.A., Rastsvietaiev, V.O., & Cherniaiev, O.V. (2019). Improving the construction of mechanized complexes for reloading points while developing deep open pits. Journal of Mining Science, 55(6), 946-953. https://doi.org/10.1134/s1062739119066332
  40. Cherniaiev, O.V., & Bondarenko, V.O. (2017). Doslidzhennia tekhniko-ekonomichnykh pokaznykiv transportuvannia hirnychoi masy pry rozrobtsi hranitnykh karieriv. Molod: Nauka ta Innovatsii, 10-11.
  41. Buzylo, V., Pavlychenko, A., Savelieva, T., & Borysovska, O. (2018). Ecological aspects of managing the stressed-deformed state of the mountain massif during the development of multiple coal layers. E3S Web of Conferences, (60), 00013. https://doi.org/10.1051/e3sconf/20186000
  42. Baibatsha, A.B., Bekbotayeva, A.A., & Mamanov, E. (2015). Detection of deep ore-controlling structure using remote sensing. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, 113-118. https://doi.org/10.5593/sgem2015/b11/s1.015
  43. Medianyk, V., & Cherniaiev, O. (2018). Technological aspects of technogenic disturbance liquidation in the areas of coal-gas deposits development. E3S Web of Conferences, (60), 00037. https://doi.org10.1051/e3sconf/20186000037
  44. Nurpeissova, M., Bekbassarov, S., Bek, A., Kyrgizbaeva, G., Turisbekov, S., & Ormanbekova, A. (2020). The geodetic monitoring of the engineering structures stability conditions. Journal of Engineering and Applied Sciences, 12(11), 9151-9163. https://doi.org/10.3923/jeasci.2017.9151.9163
  45. Aitkazinova, S.K., Nurpeisova, M.B., Kirgizbaeva, G.M., & Milev, I. (2014). Geomechanical monitoring of the massif of rocks at the combined way of development of fields. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, 2(2), 79-292.
  46. Naduty, V., Malanchuk, Z., Malanchuk, E., & Korniyenko, V. (2015). Modeling of vibro screening at fine classification of metallic basalt. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 441-443. https://doi.org/10.1201/b19901-77
  47. Chernyaev, A.V. (2006). Effektivnost’ dorabotki nerudnykh mestorozhdeniy nerudnykh stroitel’nykh materialov v glubinu nizhe granitsy podscheta zapasov. Heotekhnіchna Mekhanіka, (65), 172-178.
  48. Chernyaev, O.V. (2008). Do vyboru kryteriiv dlia vstanovlennia ratsionalnoi hlybyny rozrobky hranitnykh rodovyshch iz vnutrishnim vidvaloutvorenniam. Heotekhnichna Mekhanika, (77), 219-226.
  49. Symonenko, V.I., Haddad, J.S., Cherniaiev, O.V., Rastsvietaiev, V.O., & Al-Rawashdeh, M.O. (2019). Substantiating systems of open-pit mining equipment in the context of specific cost. Journal of The Institution of Engineers (India): Series D, (100), 301-305. https://doi.org/10.1007/s40033-019-00185-2
  50. Лицензия Creative Commons