Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Neural simulation-based analysis of the well wall stability while productive seam penetrating

Yuriy Katanov1, Yuriy Vaganov1, Matvey Cheymetov2

1Industrial University of Tyumen, Tyumen, 625000, Russian Federation

2Saint Petersburg State University of Economics, Saint Petersburg, 191023, Russian Federation


Min. miner. depos. 2021, 15(4):91-98


https://doi.org/10.33271/mining15.04.091

Full text (PDF)


      ABSTRACT

      Purpose is the development of mathematical models to evaluate deformation of parameters of the rock mass-well geological and engineering system within the anisotropic media.

      Methods. Both mathematical and neural modeling of a stress state of the rock mass-well system under conditions of geological uncertainty has been applied for the studies. From the viewpoint of mathematical modeling, analysis of probability of factors, complicating drilling, should involve a number of assumptions for strength and deformation characteristics of rock mass layers corresponding to particular hole-making conditions.

      Findings. A mathematical model of horizontal wellbore and geological layers, occurring along the structure under the conditions of permanent comprehensive stresses, has been developed. An analytical and graphical form has been applied to implement one of the basic aspects of aggregation principles of strength changes in each particular lithological layer for identification of an ideal value of horizontal/inclined wellbore length relative to the rock mass depths scheduled by mining. Regularities of changes in deformation and spatial well stability within the complex reservoirs depending upon various process duties have been determined. A neural simulation-based model has been proposed to analyze deformation of rock mass layers having different strength characteristics.

      Originality. Interaction between geomechanical characteristics of rock mass as well as deformation and spatial stability of well design has been evaluated both qualitatively and quantitatively.

      Practical implications. An opportunity has been presented to forecast deformation of well walls taking into consideration different strength as well as structural and geological rock mass characteristics on the basis of neural simulation. The represented approach has been included on the register of the best scientific-based practices according to “Methods to recover low-pressure gas of Cenomanian producing complex” Project.

      Keywords: stress, neural network, deformation, rock pressure, transversely isotropic medium, forecasting, borehole, well


      REFERENCES

  1. Katanov, Yu.E., Vaganov, Yu.V., & Listak, M.V. (2020). Geological and mathematical description of the rocks strain during behavior of the producing solid mass in compression (Tension). Journal of Mines, Metals & Fuels, 68(9), 285-293.
  2. Deyk, L.P. (2009). Osnovy razrabotki neftyanykh i gazovykh mestorozhdeniy. Moskva, Rossiya: Tekhnopress, 570 s.
  3. Dobrynin, V.M., Vendel’shteyn, B.Yu., Kozhevnikov, D.A. (2004). Petrofizika (fizika gornykh porod). Moskva, Rossiya: Neft’ i gaz, 369 s.
  4. Ermolaev, V.A., Larichev, L.N., & Moseykin, V.V. (2008). Geologiya. Chast’ 1. Osnovy geologii. Moskva, Rossiya: Izdatelstvo Moskovskogo Gosudarstvennogo Gornogo Universiteta, 622 s.
  5. Zheltov, Yu.P. (1966). Deformatsiya gornykh porod. Moskva, Rossiya: Nedra, 198 s.
  6. Katanov, Yu.E., & Yagafarov, A.K. (2016). Otsenka veroyatnosti deformatsii porod-kollektorov v nechetkikh usloviyakh. Estestvennye i Tekhnicheskie Nauki, 4(94), 41-49.
  7. Katanov, Yu.E. (2014). Matematicheskaya model’ protsessa nakopleniya i prostranstvenno-vremennoy evolyutsii ansamblya elementarnykh povrezhdeniy neft’, gaz i biznes kak edinogo dinamicheskogo protsessa. Neft’, Gaz i Biznes, (9), 60-63.
  8. Yagafarov, A.K., Kleshchenko, I.I., Popov, I.P., Vaganov, Yu.V., Katanov, Yu.E., Popova, Zh.S., & Savina, M.E. (2017). Tekhnologii povysheniya produktivnosti skvazhin i vozdeystviya na zalezhi uglevodorodov na mestorozhdeniyakh Zapadnoy Sibiri. Tyumen’, Rossiya: Tyumenskiy Industrial’nyy Universitet.
  9. Yagafarov, A.K., Kleshchenko, I.I., Korotenko, V.A., Popov, I.P., Popova, Zh.S., Vaganov, Yu.V., Kuznetsov, N.P., & Ruchkin, A.A. (2017). Geologo-promyslovye i tekhnologicheskie aspekty razrabotki neftyanykh mestorozhdeniy Zapadnoy Sibiri. Tyumen’, Rossiya: Tyumenskiy Industrial’nyy Universitet.
  10. Popov, I.P., & Zakharov, N.O. (2018). Obosnovanie flyuidodinamicheskoy modeli yuzhnogo neftyanogo mestorozhdeniya. Nauka i Mir, 1(5(57)), 59-66.
  11. Aleksandrov, V.M., Morozov, A.V., Popov, I.P., Lebedeva, R.G., & Bulgakova, I.A. (2018). Detailization of the facial conditions for sedimentation of the (formula presented) productive layer with the purpose of specificating features of the geological structure. Journal of Environmental Management and Tourism, 9(5(29)), 932-946. https://doi.org/10.14505/Jemt.V9.5(29).05
  12. Degtiarev, D., Nesterov, I., & Lintser, S. (2019). Theoretical basis of the dilatance regime in the development of hydrocarbon deposits in the Bazhenov formation. Tyumen 2019, 1-6. https://doi.org/10.3997/2214-4609.201900627
  13. Nesterov, I.I., Smirnov, P.V., Konstantinov, A.O., & Gursky, H.-J. (2020). Types, features, and resource potential of Palaeocene-Eocene siliceous rock deposits of the West Siberian Province: A review. International Geology Review, 63(4), 504-525. https://doi.org/10.1080/00206814.2020.1719370
  14. Protod’yakonov, M.M. (1930). Davlenie gornykh porod i rudnichnoe kreplenie. Moskva, Rossiya: Glavnoe Gorno-Toplivnoe Upravlenie.
  15. Satter, A., Baldwin, J., & Jespersen, R. (2000). Computer-assister reservoir management. Oclahoma, United States, 278 p.
  16. Yan, Ye., Yan, J., Zou, S., Wang, S., & Lu, R. (2008). A new laboratory method for evaluating formation damage in fractured carbonate reservoirs. Petroleum Science, 5(2), 45-51. https://doi.org/10.1007/s12182-008-0007-3
  17. Mackey, G.N. (2012). Provenance of Paleocene-Eocene Wilcox group western Gulf of Mexico basin: Evidence for integrated drainage of the southern Laramide rocky mountains and cordilleran arc. Geological Society of America Bulletin, (124), 1007-1024. https://doi.org/10.1130/B30458.1
  18. Makowitz, A., & Milliken, K.L. (2002). Quantitative measurements of brittle deformation with burial compaction, Frio formation, Gulf of Mexico basin. Gulf Coast Association of Geological Societies Transactions, (52), 695-706.
  19. Mcbride, E.F., Abdel-Wahab, A.A., & Milliken, K.L. (2002). Petrography and diagenesis of half-billion-year-old cratonic sandstone (hickory). Llano Region, Texas, United Stateds: Bureau of Economic Geology, University of Texas at Austin, Report of Investigations, 74 p. https://doi.org/10.23867/RI0264D
  20. Shmyglya, N.S. (2019). Strukturnaya interpretatsiya litologicheskikh razlichiy uslovnoy zalezhi uglevodorodov. Vzaimodeystvie Nauki i Obshchestva: Problemy i Perspektivy, (2), 64-68.
  21. Shmyglya, N.S. (2020). Poisk optimal’nykh geologo-tekhnologicheskikh parametrov massiva pri burenii. Problemy i Perspektivy Razrabotki i Vnedreniya Peredovykh Tekhnologiy, 55-57.
  22. Katanov, Yu.E. (2014). Mekhanizmy i printsipy modelirovaniya deformatsionno-prostranstvennoy neustoychivosti gornykh porod. Stroitel’stvo Neftyanykh i Gazovykh Skvazhin na Sushe i na More, (11), 19-23.
  23. Katanov, Yu.E. (2014). Matematicheskaya model’ protsessa nakopleniya i prostranstvenno-vremennoy evolyutsii ansamblya elementarnykh povrezhdeniy kak edinogo dinamicheskogo protsessa. Neft’, Gaz i Biznes, (9), 60-63.
  24. Katanov, Yu.E., Aleksandrov, V.M., & Yagafarov, A.K. (2020). Geological and mathematical analogy of reservoir and polymer structures. TEST Engineering & Management, 6977-6991.
  25. Koronovskiy, N.V. (2011). Geologiya Rossii i sopredel’nykh territoriy. Moskva, Rossiya: Akademiya, 230 s.
  26. Koronovskiy, N.V., & Yasamanov, N.A. (2011). Geologiya. Moskva, Rossiya: Akademiya, 194 s.
  27. Kuznetsov, V.G. (2007). Litologiya. Osadochnye porody i ikh Izuchenie. Moskva, Rossiya: Nedra-Biznestsentr, 513 s.
  28. Drits, V.A., Mccarty, D., Sakharov, B.A., & Milliken, K.L. (2005). Insight into structural and compositional homogeneity-heterogeneity of some ancient calcian dolomites. Canadian Mineralogist, (43), 1255-1290. https://doi.org/10.2113/gscanmin.43.4.1255
  29. Day-Stirrat, R.J., Milliken, K.L., Dutton, S.P., Loucks, R.G., Hillier, S., Aplin, A.C., & Schleicher, A.M. (2010). Open-system chemical behavior in deep Wilcox group mudstones. Marine and Petroleum Geology, (27), 1804-1818. https://doi.org/10.2113/gscanmin.43.4.1255
  30. Лицензия Creative Commons