Northeastern part of the Bilanivske ferruginousquartzite quarry: Risks of mining allotment
Serhii Lashko1
1Kremenchuk Mykhailo Ostrohradskyi National University, Kremenchuk, 39600, Ukraine
Min. miner. depos. 2021, 15(3):54-61
https://doi.org/10.33271/mining15.03.054
Full text (PDF)
      ABSTRACT
      Purpose.Substantiation of the managerial decisions to minimize the risks of mining the Bilanivske ferruginous quartzite quarry on its northeastern margin.
      Methods. The legislative, methodological, cartographic and literary materials on the topic, as well as the area of survey have been analyzed. The necessary cartographic plotting and calculations have been performed. An abstract-logical method is used to formulate conclusions and theoretical generalizations.
      Findings. The ecological risks of the Bilanivske quarry northeastern margin have been substantiated: presence of uranium ore deposits and a radioactive anomaly; geochemical pollution of groundwater; a depression cone, large in area and in depth, can be formed in the region; a probability of using explosives when mining the field; use of the Bilanivske quarry eastern side for laying mine shafts and adits. The question is raised about the expected expansion of the Bilanivske quarry boundaries to the east during its mining, as well as falling into the sanitary protection zone boundaries of the northwestern residential community of the Nova Haleshchyna urban-type settlement. It is recommended, when mining the Bilanivske and Kremenchuk (Haleshchynske) iron ore deposits, to develop for them a unified draft Environmental Impact Assessment (EIA) and a unified draft of sanitary protection zone, taking into account the fact of their mutual influence on the environment.
      Originality.For the first time, based on a combination of geological, mining, technological and spatial factors, a site (zone) of mutual risks has been identified in the Bilanivske and Kremenchuk (Haleshchynske) iron ore deposits development. The site has an area of 165 ha, bounded by the northeastern side of the Bilanivske quarry and the southern boundary of the planned Haleshchynske mine.
      Practical implications.The research results can substantiate the need to resettle the residents from the northwestern residential community of the Nova Haleshchyna urban-type settlement, taking into account the Bilanivske field development by the open-pit method. In addition, they also can serve as a basis for resolving disputes between these residents and the administration of Ferrexpo Belanovo Mining LLC (Bilanivske Mining Plant).
      Keywords:quarry, boundary, zone, risks, site, special permit, mining allotmen
      REFERENCES
- Reznik, O.M., Riadinska, V.O., Kuybida, V.S., Zubenko, H.V., & Zastrozhnіkova, I.V. (2020). Regulatory and organizational aspects: Administrative-territorial reform in Ukraine. International Journal of Management, 11(4), 576-584. https://doi.org/10.34218/IJM.11.4.2020.055
- Popadynets, N., Bondarenko, V., Dovba, I., & Fedurtsia, V. (2020). Assessment of efficiency of the use of natural resources capacity by territorial communities in conditions of administrative-territorial reform in Ukraine. International Journal of Industrial Engineering & Production Research, 31(4), 499-510. https://doi.org/10.22068/ijiepr.31.4.499
- Suhina, O., Ulytskyi, O., Razovskiy, Yu., & Saveleva, E. (2018). Strategic directions of development of the economic mechanism of subsoil use in conditions of decentralization of authorities in Ukraine. In S.I. Drobyazko (Ed.) Strategic research directions: Collection of scientific articles (рр. 39-41). Coventry, United Kingdom: Agenda Publishing House.
- Verkhovtsev, V.G., Lysychenko, G.V., Tyshchenko, Yu.Ye., Shvaiko, V.G., & Kovalenko, G.D. (2012). Kompleksni radioheoekolohichni doslidzhennia terytorii Bilanivskoho zalizorudnoho rodovyshcha. Tekhnogenno-Ekolohichna Bezpeka ta Tsyvilnyi Zakhyst, (5), 28-40.
- Verkhovtsev, V.G., Kramar, O.O., Yuskiv, Yu.V., Krasnov, Ye.B., & Tyshchenko, Yu.Ye. (2014). Novitnia tektonika terytorii Bilanivskoho zalizorudnoho ta Kremenchutskoho uranovoho rodovyshch. Geofizicheskiy Zhurnal, 36(4), 136-148.
- Dudar, T., Verkhovtsev, V., Tyshchenko, Yu., Kyselevych, L., & Buglak, O. (2019). Radon-prone areas: The Ukrainian shield case study. Conference Proceedings, 18th International Conference on Geoinformatics – Theoretical and Applied Aspects, 1-6. https://doi.org/10.3997/2214-4609.201902034
- Krasnov, Ye., Verkhovtsev, V., Tyshchenko, Yu., & Studzinska, A. (2017). Estimation of soil radiation in the country around the Bilanovo iron and Kremenchug uranium deposits. In D. Dent & Yu. Dmytruk (Eds.) Soil Science Working for a Living. Applications of soil science to present-day problems (pp. 227-241). Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319-45417-7_22
- Lashko, S.P. (2017). Do pytannia bezpeky ekspluatatsii pivnichno-skhidnoi chastyny Bilanivskoho kar’ieru zalizystykh kvartsytiv. Visnyk Kremenchutskoho Natsionalnoho Universytetu Imeni Mykhaila Ostrohradskoho, 1(102), 141-146.
- Baranov, V.A., Mametova, L.F., & Korovin, V.Yu. (2020). Modelling of metasomatosis in radiogenic rocks as a factor of transformation of their properties. Geofizicheskiy Zhurnal, 42(1), 86-95. https://doi.org/10.24028/gzh.0203-3100.v42i1.2020.195478
- Bakarzhyiev, A.Kh., & Lysenko, O.A. (2018). Istoriia stvorennia syrovynnoi bazy uranu Ukrainy. Mineralni Resursy Ukrainy, (1), 4-14. https://doi.org/10.31996/mru.2018.1.4-14
- Dudar, T.V. (2019). Uranium mining and milling facilities legacy sites: Ukraine case study. Environmental Problems, 4(4), 212-218. https://doi.org/10.23939/ep2019.04.212
- Dudar, T., Lysychenko, G., & Buhera, M. (2018). Uranium resources of Ukraine: Geology, mineralogy, and some mining aspects. Riga, Latvia: LAP Lambert Publishing House, 108 p.
- Isinkaye, O.M., Adeleke, S., & Isah, D.A. (2018). Background radiation measurement and the assessment of radiological impacts due to natural radioactivity around Itakpe iron-ore mines. MAPAN – Journal of Metrology Society of India, 33(3), 271-280. https://doi.org/10.1007/s12647-018-0261-9
- Isinkaye, O.M. (2018). Distribution and multivariate pollution risks assessment of heavy metals and natural radionuclides around abandoned iron-ore mines in North Central Nigeria. Earth Systems and Environment, 2(2), 331-343. https://doi.org/10.1007/s41748-018-0035-0
- Tyshchenko, O. (2017). Comparison of groundwater and surface water quality in the area of the Bilanovo iron deposit. In D. Dent & Yu. Dmytruk (Eds.), Soil Science Working for a Living. Applications of soil science to present-day problems (pp. 219-225). Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319-45417-7_21
- Volkov, Yu.I., & Zhdanova, T.V. (2015). Primeneniya geofil’tra-tsionnogo modelirovaniya pri otrabotke kar’yerov Kremenchugskoy magnitnoy anomalii. Gornyy Informatsionno-Analiticheskiy Byulleten’, Glubokie Kar’yery, 11(56), 356-367.
- Zmiievska, K., & Tubaltsev, A. (2019). Possibility of application of the method of observing the natural impulse electromagnetic field of the earth for allocation of watered faults on the example of Yeristovo quarry. Journal of Geology, Geography and Geoecology, 28(1), 199-206. https://doi.org/10.15421/111921
- Lashko, S.P., Shelkovska, I.M., & Kozar, L.M. (2018). Orhanizatsiini momenty rozrobky Bilanivskoho rodovyshcha zalizystykh kvartsytiv. Visnyk Khmelnytskoho Natsionalnoho Universytetu, Ekonomichni Nauky, 3(2(258)), 77-79.
- Šimková, Z., Cehlár, M., & Pavolová, H. (2016). Strategy of point out relevance of responsible exploitation of mineral resources. Acta Montanistica Slovaca, 21(3), 208-216.
- Holley, E.A., & Mitcham, C. (2016). The Pebble mine dialogue: A case study in public engagement and the social license to operate. Resources Policy, (47), 18-27. https://doi.org/10.1016/j.resourpol.2015.11.002
- Debrah, A.A., Mtegha, H., & Cawood, F. (2018). Social licence to operate and the granting of mineral rights in sub-Saharan Africa: Exploring tensions between communities, governments and multi-national mining companies. Resources Policy, 56(С), 95-103. https://doi.org/10.1016/j.resourpol.2018.02.008
- García-Ortega, B., De-Miguel-Molina, B., & Chirivella-Gonzalez, V. (2020). Corporate social responsibility in the mining industry in Latin America: A multiactor model. America Latina Hoy, (86), 23-40. https://doi.org/10.14201/alh.22369
- Lopez-Morales, J.S., Ortega-Ridaura, I., & Ortiz-Betancourt, I. (2017). Strategies of corporate social responsibility in Latin America: a content analysis in the extractive industry. AD-minister, (31), 115-135.https://doi.org/10.17230/ad-minister.31.7
- Stefanescu, L., & Alexandrescu, F. (2020). Environmental protection or subversion in mining? Planning challenges, perspectives and actors at the largest gold deposit in Europe. Land Use Policy, (95), 103649. https://doi.org/10.1016/j.landusepol.2018.10.011
- Tarras-Wahlberg, H., Cronjé, F., Reyneke, S., & Sweet, S. (2017). Meeting local community needs: The cases of iron ore mining in Sweden and South Africa. The Extractive Industries and Society, 4(3), 652-660. https://doi.org/10.1016/j.exis.2017.05.002
- Bergeron, K.M. (2021). What can a hundred mining exploration projects in Canada tell us about social risk? Considering an area’s trajectory to understand its sociogeological potential. The Extractive Industries and Society, 8(1), 83-88. https://doi.org/10.1016/j.exis.2020.09.004
- Cocheci, R.-M., Iano, I., Sârbu, C.N., Sorensen, A., Saghin, I., & Secăreanu, G. (2019). Assessing environmental fragility in a mining area for specific spatial planning purposes. Moravian Geographical Reports, 27(3), 169-182. https://doi.org/10.2478/mgr-2019-0013
- Kirin, R. (2019). Statutory and regulatory requirements in the process of mineral mining in Ukraine. Review and analysis. Mining of Mineral Deposits, 13(2), 59-65. https://doi.org/10.33271/mining13.02.059
- Bliznyukov, V.G., Lutsenko, S.A., & Baranov, I.V. (2018). Rozvytok metodolohii vyznachennia hranyts kar’ieriv. Heotekhnichna Mekhanika, (142), 59-66.
- Dryzhenko, A., Moldabayev, S., Shustov, A., Adamchuk, A., & Sarybayev, N. (2017). Open pit mining technology of steeply dipping mineral occurences by steeply inclined sublayers. International Multidisciplinary Scientific Geoconference, (13), 599-606. https://doi.org/10.5593/sgem2017/13/s03.076
- Kozyrev, A.A., Semenova, I.E., Rybin, V.V., & Avetisyan, I.M. (2015). Stress redistribution in deep open pit mine Zhelezny at Kovdor iron ore deposit. Journal of Mining Science, (51), 659-665. https://doi.org/10.1134/S1062739115040015
- Kassymkanova, K.-K., Jangulova, G., Issanova, G., Turekhanova, V., & Zhalgasbekov, Ye. (2020). Geomechanical processes and their assessment in the rock massifs in Central Kazakhstan. Springerbriefs in Earth Sciences. Cham, Switzerland: Springer Nature Switzerland AG, 94 р. https://doi.org/10.1007/978-3-030-33993-7
- Bakhtavar, E. (2013). Transition from open-pit to underground in the case of Chah-Gaz iron ore combined mining. Journal of Mining Science, 49(6), 955-966. https://doi.org/10.1134/S1062739149060166
- Gorova, A., Pavlychenko, A., Kulyna, S., & Shkremetko, O. (2012). Ecological problems of post-industrial mining areas. Geomechanical Processes During Underground Mining, 35-40. https://doi.org/10.1201/b13157-7
- Lyashenko, V.I., Khomenko, O.E., Golik, V.I. (2020). Development of environment-friendly and resource-saving methods of underground ore mining in disturbed rock masses. Mining Science and Technology, 5(2), 104-118. https://doi.org/10.17073/2500-0632-2020-2-104-118
- Khomenko, O. E., Kononenko, M. N., & Lyashenko, V. I. (2018). Safety improving of mine preparation works at the ore mines. Occupational Safety in Industry, (5), 53-59. https://doi.org/10.24000/0409-2961-2018-5-53-59
- Hudej, M., Vujic, S., Radosavlevic, M., & Ilic, S. (2013). Multi-variable selection of the main mine shaft location. Journal of Mining Science, (49), 950-954. https://doi.org/10.1134/S1062739149060154
- Abdykaparov, C.M., & Abdiev, A.R. (2002). State and prospects of the development the brown coal deposit in Kara-Keche. Gornyi Zhurnal, (10), 16-19.
- Weslynne, S.A. (2008). Understanding the organization of industrial ecosystems. A social network approach. Journal of Industrial Ecology, 12(1), 34-51. https://doi.org/10.1111/j.1530-9290.2008.00002.x
- Bagazeev, V., Valiev, N., Kokarev, K., & Startsev, V. (2018). Method of placer mining by directional well drilling. E3S Web of Conferences, (56), 01022. https://doi.org/10.1051/e3sconf/20185601022
- Stupnik, M., Tarasiutin, V., & Fedorenko, P. (2018). Parameters of selective martite ores disintegration in structured ore bodies deposits by borehole hydraulic monitors. E3S Web of Conferences, (60), 00032. https://doi.org/10.1051/e3sconf/20186000032
- Tretyak, A.Ya., Litkevich, Yu.F., & Grossu, A.N. (2015). The technology of hydraulic ore mining on Kursk magnetic anomaly field. Mining Informational and Analytical Bulletin, (3), 50-54.
- Tripathya, S.K., Bhojaa, S.K., Kumara, C.R., & Suresh, N. (2015). A short review on hydraulic classification and its development in mineral industry. Powder Technology, (270), 205-220. https://doi.org/10.1016/j.powtec.2014.09.049
- Sagintayev, Z., Yerikuly, Z., Zhaparkhanov, S., Panichkin, V., Miroshnichenko, O., & Mashtayeva, S. (2015). Groundwater inflow modeling for a Kazakhstan copper ore deposit. Journal of Environmental Hydrology, 23(9), 1-13.
- Kramar, O.O., Krasnov, Ye.B., Tyshchenko, O.Yu., & Tyshchenko, Yu.Ye. (2016). Otsinka potentsiinoho vplyvu pidzemnykh vod na radioekolohichnu sytuatsiiu pry rozrobtsi Bilanivskoho zalizorudnoho rodovyshcha. Zbirnyk Naukovykh Prats Instytutu Heokhimii Navkolyshnoho Seredovyshcha, (26), 164-172.
- Kumar, R., Choudhury, D., & Bhargava, K. (2016). Determination of blast-induced ground vibration equations for rocks using mechanical and geological properties. Journal of Rock Mechanics and Geotechnical Engineering, 8(3), 341-349. https://doi.org/10.1016/j.jrmge.2015.10.009
- Symonenko, V.I., Pavlychenko, A.V., Cherniaiev, O.V., & Grytsenko, L.S. (2015). Ecologically-saving technologies of field development in conditions of reduced sanitary protection zone. Mining of Mineral Deposits, 9(4), 469-476. https://doi.org/10.15407/mining09.04.469