Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Study and evaluation of the stability of underground mining method used in shallow-dip vein deposits hosted in poor quality rock

Omar Ghazdali1, Jalal Moustadraf1, Tarik Tagma1, Bahija Alabjah2, Fouad Amraoui2

1University Sultan Moulay Slimane, Beni-Mellal, 23000, Morocco

2Casablanca University Hassan II, Casablanca, 20000, Morocco

Min. miner. depos. 2021, 15(3):31-38

Full text (PDF)


      Purpose.This article proposes to analyze and determine the mining design for shallow-dip deposits hosted in poor quality rock.

      Methods. We used the UBC tool to find the optimal exploitation method, the Rock mass rating (RMR) and Q-system (Q) to determine the optimal mining stope and the recommended rock support, the numerical modeling by RS2 software with a variety of geotechnical, geometrical, and technical conditions to analyze the evolution of the unstable zone width and the maximum total displacement around the stope after excavation.

      Findings. The optimum mining method designated by the UBC tool for this type of deposit is the cut and fill. By projecting the obtained RMR and Q-system values on the design graph, it is concluded that the operating stope is located in the stable zone with a height of 3 m, and bolting support is recommended. The simulation by RS2 software reveals that the optimal mining design that can be used to mine shallow-dip vein deposits hosted in poor quality rocks consists of a 3 m high stope and a 75° dip with cemented backfill.

      Originality.This work presents a study to choose the most suitable underground mining method and mine design for shallow-dip deposits hosted in poor quality rock.

      Practical implications.In the mining industry, the success of operating an underground mine is conditioned by the selection of the appropriate method, of the mining design and dimensioning of a rock support adapted to the nature of the rock, and excavation geometry according to the type and nature of the deposit.

      Keywords:mining method, displacement, unstable zone, rock mass, poor quality, backfill


  1. Ibishi, G., Yavuz, M., & Genis, M. (2020). Underground mining method assessment using decision-making techniques in a fuzzy environment: Case study, Trepça mine, Kosovo. Mining of Mineral Deposits, 14(3), 134-140.
  2. Jorge, I., Romero, G., Felix, A., & Cortes, A. (2014). Mining method selection methodology by multiple criteria decision analysis – Case study in Colombian coal mining. The International Symposium of the Analytic Hierarchy Process 2014. Washington, United States.
  3. Azadeh, A., Osanloo, M., & Ataei, M. (2010). A new approach to mining method selection based on modifying the Nicholas technique. Applied Soft Computing, 10(4), 1040-1061.
  4. Fatemeh, A.O., Mojtaba, Y., Raheb, B., & Mehrbod, K.E. (2018). The development of a novel model for mining method selection in a fuzzy environment; Case study: Tazareh coal mine, Semnan province, Iran. Rudarsko Geolosko Naftni Zbornik, 33(1), 45-53.
  5. Bajkonurov, A.O. (1969). Classification and selection of underground mining development methods. Alma-Alta, Kazakhstan: Nauka.
  6. Boshkov, S., & Wright, F. (1973). Basic and parametric criteria in the selection, design and development of underground mining systems. SME Mining Engineering Handbook, (1), 12.12-12.13.
  7. Budko, V.A. (1971). Selection of advanced development systems. Moscow, Russian Federation: Nedra.
  8. Imenitov, R.V. (1970). Underground mining development processes. Moscow, Russian Federation: Nedra.
  9. Laubscher, D. (1981). Selection of mass underground mining methods. Design and Operation of Caving and Sublevel Stoping Mines, 23-38.
  10. Morrison, R. (1976). A philosophy of ground control: A bridge between theory and practice. Montreal, Canada: Department of Mining and Metallurgical Engineering, McGill University.
  11. Popov, N.G. (1970). Technology and complex mechanization for underground mining. Moscow, Russian Federation: Nedra.
  12. Hartman, H.L. (1987). Introductory mining engineering. New York, United States: John Wiley.
  13. Nicholas, D.E. (1993). Selection procedure. Mining Engineering Handbook (pp. 2090-2105). New York, United States: John Wiley.
  14. Nicholas, D.E. (1981). Methods selection – A numerical approach. Design and Operation of Caving and Sublevel Stoping Methods, 330-340.
  15. Miller-Tait, L., Pakalnis, R., & Poulin, R., (1995). UBC mining method selection. Mine Planning and Equipment Selection, 163-168.
  16. Bitarafan, M., & Ataei, M. (2004). Mining method selection by multiple criteria decision making tools. The Journal of the South African Institute of Mining and Metallurgy, (104), 493-498.
  17. Karadogan, A., Bascetin, A., Kahriman, A., & Gorgun, S. (2001). A new approach in selection of underground mining method. International Scientific Conference – SGEM 2001, 171-184.
  18. Naghadehi, M.Z., Mikaeil, R., & Ataei, M. (2009). The application of fuzzy analytic hierarchy process (FAHP) approach to selection of optimum underground mining method for Jajarm Bauxite Mine, Iran. Expert Systems with Applications, 36(4), 8218-8226.
  19. Lee, C.-I., & Song, J.-J. (2018). Stability analysis of rock blocks around a tunnel. Mechanics of Jointed and Faulted Rock, 443-448.
  20. Liu, T., Lin, B., & Yang, W. (2017). Mechanical behavior and failure mechanism of pre-cracked specimen under uniaxial compression. Tectonophysics, (712-713), 330-343.
  21. Zhang, W., Zhang, W.S., Zhang, D., Hu, W., Sun, Y., & Tang, J. (2018). Monitoring technology of “space-surface” for activity laws of mining-induced overburded. Journal of China University of Mining and Technology, (47), 1212-1223.
  22. Mercier-Langevin, F., & Turcotte, P. (2007). Evolution of ground support practices at Agnico-Eagle’s LaRonde Division; Innovative solutions to high-stress yielding ground. Rock Mechanics: Meeting Society’s Challenges and Demands, 1497-1504.
  23. Potvin, Y., & Hadjigeorgiou, J. (2008). Ground support strategies to control large deformations in mining excavations. Journal of the South African Institute of Mining & Metallurgy, 108(7), 397.
  24. Ozdogan, M.V., & Gonen, A. (2019). Determination of distance required to ensure stope and footwall-drift non-interaction zone based on geological strength index. Earth Sciences Research Journal, 23(1), 17-25.
  25. Lizotte, Y.C., & Dufresne, S. (1990). Exploitation des gisements filoniens par chantiers longs trous. 13 Session d’etude sur les techniques de sautage les 1er et 2 novembre.
  26. Simon, C., & Dominy, A. (1999). Geology in the resource and reserve estimation of narrow vein deposits. Exploration and Mining Geology, 6(4), 317-333.
  27. Paraszczak, J. (2016). Sélection de la méthode de fragmentation du roc pour le minage des gisements filoniens. Département de génie des mines, De la métallurgie et des matériaux Université Laval, Québec.
  28. Begalinov, A., Serdaliyev, Y., Abshayakov, E., & Bakhramov, B. (2015). Extraction technology of fine vein gold ores. Metallurgical and Mining Industry, (4), 312-320.
  29. Tomich, A.R. (2020). An evaluation procedure for new deposits in brownfield underground mines. PhD Thesis. Ontario, Canada: Department of Mining Engineering In conformity with the requirements for the degree of Master of Applied Science Queen’s University Kingston.
  30. Pakalnis, R. (2015). Empirical design methods in practice. Proceedings of the International Seminar on Design Methods in Underground Mining.
  31. Using the Q-system: Rock mass classification and support design. Oslo, Norway: Norwegian Geotechnical Institute.
  32. Bieniawski, Z.T. (1989). Engineering rock mass classifications: A complete manual for engineers and geologists in mining, civil, and petroleum engineering. New York, United States: John Wiley.
  33. Jing, L., & Hudson, J.A. (2002). Numerical methods in rock mechanics. International Journal of Rock Mechanics and Mining Sciences, 39(4), 409-427.
  34. Sharma, K.G., (2009). Numerical analysis of underground structures. Indian Geotechnical Journal, 39(1), 1-6.
  35. Mikola, R.G. (2009). ORMAS V1.0: Online Rock Mass Strength by Roozbeh Geraili Mikola. PhD, PE, based on Generalized Hoek-Brown Criterion. Retrieved from:
  36. Singh, J.L., & Tamrakar, N.K. (2013). Rock mass rating and geological strength index of rock masses of Thopal-Malekhu river areas, Central Nepal lesser Himalaya. Bulletin of the Department of Geology, (16), 29-42.
  37. Laderian, A., & Abaspoor, M.A. (2011). The correlation between RMR and Q systems in parts of Iran. Tunnelling and Underground Space Technology, 27(2012), 149-158.
  38. Sheorey, P.R. (1994). A theory for In Situ stresses in isotropic and transverseley isotropic rock. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 31(1), 23-34.
  39. Mining Studio. (2019). Mining method selection (trial software). Retrieved from:
  40. Wang, J., Milne, D., & Pakalnis, R. (2002). Application of a neural network in the empirical design of underground excavation spans. Mining Technology, 111(1), 73-81.
  41. Grimstad, E., & Barton, N. (1993). Updating of the Q-system for NMT. International Symposium on Sprayed Concrete, 46-66.
  42. Kumar, H., Deb, D., & Chakravarty, D. (2017). Design of crown pillar thickness using finite element method and multivariate regression analysis. International Journal of Mining Science and Technology, 27(6), 955-964.
  43. Ozdogan, M.V., Yenice, H., Gönen, A., & Karakus, D. (2018). Optimal support spacing for steel sets: Omerler underground coal mine in Western Turkey. International Journal of Geomechanics, 18(2), 05017003.
  44. Wael, R., Elrawy, A., Mohammed, A., Hefni, H., & Ahmed, M. (2019). Factors influencing stope hanging wall stability and ore dilution in narrow-vein deposits: Part 1. Geotechnical and Geological Engineering, 38(2), 1451-1470.
  45. Zhao, X., Li, H., Zhang, S., & Yang, X. (2019). Stability analyses and cable bolt support design for a deep large-span stope at the Hongtoushan Mine, China. Sustainability, 11(21), 6134.
  46. RocScience Inc. (2021). RS2-11.0Z (rock and soil 2-dimensional analysis program). Toronto, Canada: RocScience Inc.
  47. Perron, J. (1999). Simple solutions and employee’s involvement reduced the operating cost and improved the productivity at Langlo-s mine. Proceedings of the 14th CIM Mine Operator’s Conference, 21-25.
  48. Sivakugan, N., Veenstra, R., & Naguleswaran, N. (2015). Underground mine backfilling in Australia using paste fills and hydraulic fills. International Journal of Geosynthetics and Ground Engineering, 1(2).
  49. Rankine, R., Pacheco, M., & Sivakugan, N. (2007). Underground mining with backfills. Soils and Rocks, 30(2), 93-101.
  50. Pengyu, Y. (2016). Investigation of the geomechanical behavior of mine backfill and its interaction with rock walls and barricades. Département de Génies Civil, Géologique et des Mines, École Polytechnique de Montréal (pp. 46-47).
  51. Benzaazoua, M., Bois, D., Belem, T., Gauthier, P., Ouellet, S., Fall, M., & St-Onge, J.F. (2005). Remblais souterrains, évolution des connaissances et de la pratique. In 20th Colloque Contrôle de Terrains.
  52. Aubertin, M. (2003). Modélisation numérique des interactions entre le remblai minier et le massif rocheux de chantiers étroits remblayés. 18e Colloque en Contrôle de terrain de l’AMQ, Val-d’Or, 8 p.
  53. Лицензия Creative Commons