Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Analytical modeling of mine water rebound: Three case studies in closed hard-coal mines in Germany

Dmytro Rudakov1, Sebastian Westermann2

1Dnipro University of Technology, Dnipro, 49005, Ukraine

2Technische Hochschule Georg Agricola – University, Bochum, 44787, Germany


Min. miner. depos. 2021, 15(3):22-30


https://doi.org/10.33271/mining15.03.022

Full text (PDF)


      ABSTRACT

      Purpose.In this paper we present and validate an analytical model of water inflow and rising level in a flooded mine and examine the model robustness and sensitivity to variations of input data considering the examples of three closed hard-coal mines in Germany.

      Methods. We used the analytical solution to a boundary value problem of radial ground water flow to the shaft, treated as a big well, and water balance relations for the series of successive stationary positions of a depression cone to simulate a mine water rebound in the mine taking into account vertical distribution of hydraulic conductivity, residual volume of underground workings, and natural pores.

      Findings. The modeling demonstrated very good agreement with the measured data for all the studied mines. The maximum relative deviation for the mine water level during the measurement period did not exceed 2.1%; the deviation for the inflow rate to a mine before its flooding did not exceed 0.8%. Sensitivity analysis revealed the higher significance of the residual working volume and hydraulic conductivity for mine water rebound in the case of thick overburden and the growing significance of the infiltration rate and the flooded area size in the case of lower overburden thickness.

      Originality.The developed analytical model allows realistic prediction of transient mine water rebound and inflow into a mine with layered heterogeneity of rocks, irregular form of the drained area, and with the inflow/outflow to a neighboring mine and the volume of voids as a distributed parameter without gridding the flow domain performed in numerical models.

      Practical implications.The study demonstrated the advantages of analytical modeling as a tool for preliminary evaluation and prediction of flooding indicators and parameters of mined out disturbed rocks. In case of uncertain input data, modeling can be considered as an attractive alternative to usually applied numerical methods of modeling ground and mine water flow.

      Keywords:mine flooding, mine water rebound, water level, inflow rate, analytical model, sensitivity analysis


      REFERENCES

  1. Mine closure and post-mining management. International state-the-art. (2008). Lisbon, Portugal: International Commission on Mine Closure. International Society for Rock Mechanics.
  2. Soni, A.K., & Wolkersdorfer, C. (2016). Mine water: Policy perspective for improving water management in the mining environment with respect to developing economies. International Journal of Mining, Reclamation and Environment, 30(2), 115-127. https://doi.org/10.1080/17480930.2015.1011372
  3. Wolkersdorfer, C., & Bowell, R. (2004). Contemporary reviews of mine water studies in Europe, Part 1. Mine Water and the Environment, 23(4), 162-182. https://doi.org/10.1007/s10230-004-0060-0
  4. Kessler, T., Mugova, E., Jasnowski-Peters, H., Rinder, T., Stemke, M., Wolkersdorfer, C., & Schafmeister, M.-T. (2020). Grundwasser in ehemaligen deutschen Steinkohlenrevieren – ein wissenschaftlicher Blickwinkel auf Grubenflutungen. Grundwasser, 25(4), 259-272. https://doi.org/10.1007/s00767-020-00460-0
  5. LANUV NRW. (2018). Landesamt für Natur, Umwelt, und Verbraucherschutz nordrhein-westfahlen: Potenzialstudie warmes Grubenwasser – Fachbericht 90. Recklinghausen, Germany, 154 p.
  6. Loredo, C., Roqueñi, N., & Ordóñez, A. (2016). Modelling flow and heat transfer in flooded mines for geotermal energy use: A review. International Journal of Coal Geology, (164), 115-122. https://doi.org/10.1016/j.coal.2016.04.013
  7. Banks, D. (2001). A variable-volume, head-dependent mine water filling model. Ground Water, 39(3), 362-365. https://doi.org/10.1111/j.1745-6584.2001.tb02319.x
  8. Sadovenko, I., Zagrytsenko, A., Podvigina, O., & Derevyagina, N. (2016). Assessment of environmental and technical risks in the process of mining on the basis of numerical simulation of geofiltration. Mining of Mineral Deposits, 10(1), 37-43. https://doi.org/10.15407/mining10.01.037
  9. Sadovenko, I., Rudakov, D., & Podvigina, O. (2010). Analysis of hydrogeodynamics in a mining region during exploitation till closure of coal mines. New Techniques and Technologies in Mining – Proceedings of the School of Underground Mining, 61-69. https://doi.org/10.1201/b11329-12
  10. Szczepiński, J. (2019). The significance of groundwater flow modeling study for simulation of opencast mine dewatering, flooding, and the environmental impact. Water, (11), 848. https://doi.org/10.3390/w11040848
  11. Quiros, A.G., & Fernández-Álvarez, J.P. (2019). Conceptualization and finite element groundwater flow modeling of a flooded underground mine reservoir in the Asturian Coal Basin, Spain. Journal of Hydrology, (578), 124036. https://doi.org/10.1016/j.jhydrol.2019.124036
  12. Renz, A., Rühaak, W., Schätzl, P., & Diersch, H.-J.G. (2009). Numerical modeling of geothermal use of mine water: Challenges and examples. Mine Water and the Environment, 28(1), 2-14. https://doi.org/10.1007/s10230-008-0063-3
  13. Eckart, M. (2011). BoxModel Concept: ReacFlow3D. Modelling of the flow of mine water and groundwater, mass and heat transport. Essen, Germany: DMT GmbH & Co. KG, 34 p.
  14. Hölting, B., & Coldewey, W.G. (2009). Einführung in die Allgemeine und Angewandte Hydrogeologie. Hamburg, Germany: Spektrum, 383 p.
  15. Sadovenko, I.O., & Rudakov, D.V. (2010). Dynamics of mass transport with ground water flow during active and closing mining operations. Dnipropetrovsk, Ukraine: National Mining University, 216 p.
  16. Rudakov, D.V., Coldewey, W.G., & Goerke-Mallet, P. (2014). Modeling the inflow and discharge from underground structures within the abandoned hardcoal mining area of Westfeld (Ibbenbüren) (pp. 699-705). In: An Interdisciplinary Response to Mine Water Challenges. Sui, Sun, & Wang (eds). Xuzhou, China: China University of Mining and Technology Press.
  17. Westermann, S., Rudakov, D., Reker, B., & Melchers, C. (2019). Ein neuer Blick auf Grubenwasseranstiegsprozesse – ausgewählte Beispiele aus dem deutschen Steinkohlenbergbau. Markscheidewesen, 126(1), 30-38.
  18. Hydrogeologist’s guide. Volume 1. (1967). Leningrad, Russia: Nedra, 592 p.
  19. Kerkis, Ye.Ye. (1955). Evaluation the radius of influence in inflow calculation. Moscow, Russia: Ugletechizdat, 100 p.
  20. Westermann, S. (2020). Modellbasierte Sensitivitätsanalyse systembestimmender Faktoren eines Grubenwasseranstiegs in Unteragebergwerken mittels statistischer Versuchsplanung. Thesis for a PhD in Technical Sciences Clausthal-Zellerfeld, Germany: Technische Universität Clausthal, 220 p.
  21. Gesamtverband Steinkohle e.V. (GvSt). (2017). Steinkohle 2017. Verantwortung für Generationen. Annual report, 67 p.
  22. Лицензия Creative Commons